Pix4D

Pix4D is a Swiss company which started in 2011 as a spinoff of the École Polytechnique Fédérale de Lausanne (EPFL) Computer Vision Lab in Switzerland.[1] It develops a suite of software products that use photogrammetry[2][3] and computer vision algorithms to transform DSLR, fisheye, RGB, thermal and multispectral images into 3D maps and 3D modeling.[4][5]

Pix4D
Developer(s)Pix4D
Initial release2011
Stable release
4.6.4 / January 22, 2021
Operating systemWindows, Linux, MacOs
Available inEN, ES, FR, DE, IT, JP, KO, zh-CN, zh-TW, RU
Typephotogrammetry, 3D computer graphics software, computer vision, Point cloud
LicenseProprietary
Websitepix4d.com

Pix4D suite of products includes Pix4Dmapper, Pix4Dfields, Pix4Dcloud, Pix4Dinspect, Pix4Dscan, Pix4Dreact, Pix4Dsurvey, Pix4Dcatch, Pix4Dmatic, Pix4Dcapture, and Pix4Dengine.

Its software lines operate on desktop, cloud, and mobile platforms.[6] Pix4Dmapper has been used to map the Matterhorn mountain in Switzerland,[7] the Christ the Redeemer statue in Brazil [8] and also the 2018 lower Puna eruption[9] in Hawaii island.

New look for the 10 years of Pix4D

To celebrate its 10 years, Pix4D updated its logo and website styling.

Languages

The desktop versions of Pix4D software are available in: English, Spanish, Mandarin (zh-CH, zh-TW), Russian, German, French, Japanese, Italian and Korean.
The Cloud versions are available in: English and Japanese.
The mobile versions of Pix4D software are available in English.

Industries

The major industries that Pix4D software is used, are:

References

  1. Mitchell, Michael."EPFL Spinoff Turns Thousands of 2D Photos into 3D Images", EPFL, Lausanne, 9 May 2011. Retrieved on 17 January 2017.
  2. Britanica, "What is photogrammetry". 2019.
  3. J. Vallet a / F. Panissod a / C. Strecha b / M. Tracol c (Sep 16, 2011). "Photogrammetric performance of an ultra light weight swinglet "UAV"" (PDF). ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 3822: 253–258. Bibcode:2011ISPAr3822C.253V. doi:10.5194/isprsarchives-XXXVIII-1-C22-253-2011.
  4. Trout, Christopher. “Pix4D Turns Your 2D Aerial Photographs into 3D Maps on the Fly”, “Engadget”, 7 May 2011. Retrieved 24 October 2016.
  5. Rumpler, Markus; Daftry, Shreyansh; Tscharf, Alexander; Prettenthaler, Rudolf; Hoppe, Christof; Mayer, Gerhard; Bischof, Horst."AUTOMATED END-TO-END WORKFLOW FOR PRECISE AND GEO-ACCURATE RECONSTRUCTIONS USING FIDUCIAL MARKERS", International Society for Photogrammetry and Remote Sensing, Zurich, 7 September 2014. Retrieved on 17 January 2017.
  6. "Mobile + Desktop + Cloud", "Pix4D". Retrieved 18 January 2017.
  7. Drone Adventures team. “Matterhorn mapped by fleet of drones in under 6 hours”, 11 January 2018,
  8. Simonite, Tom. “High-Resolution 3-D Scans Built from Drone Photos”, MIT Technology Review, 19 March 2015. Retrieved on 18 January 2017.
  9. UH Hilo Team. “Mapping Kilauea's volcanic eruption with drones”, 28 February 2019,
  10. Pascal Sirguey, Julien Boeuf, Ryan Cambridge, Steven Mills (Aug 18, 2016). Evidences of Sub-Optimal Photogrammetric Modelling In RPAS-based Aerial Surveys (PDF).{{cite book}}: CS1 maint: multiple names: authors list (link)
  11. F. Bachmann, R. Herbst, R. Gebbers, V.V. Hafner (Sep 2, 2013). Micro UAV based georeferenced orthophoto generation in VIS+NIR for precision agriculture (PDF).{{cite book}}: CS1 maint: multiple names: authors list (link)
  12. Shahab Moeini, Azzeddine Oudjehane, Tareq Baker, Wade Hawkins (Aug 8, 2017). Application of an interrelated UAS - BIM system for construction progress monitoring, inspection and project management1 (PDF).{{cite book}}: CS1 maint: multiple names: authors list (link)
  13. Juergen Landauer, ResearchGate Automating Archaeological Documentation with Robotics Tools. April 1, 2019.
  14. Juergen Landauer, ResearchGate Towards automating drone flights for archaeological site documentation. Sep 1, 2018.
  15. Khaula Alkaabi, Abdelgadir Abuelgasim (Sep 8, 2019). Applications of Unmanned Aerial Vehicle (UAV) Technology for Research and Education in UAE (PDF).
  16. Áthila Gevaerd Montibeller (July 1, 2017). Estimating energy fluxes and evapotranspiration of corn and soybean with an unmanned aircraft system in Ames, Iowa.
  17. Raid Al-Tahir (Sep 2, 2015). Integrating UAV into geomatics curriculum (PDF).
  18. Christoph Strecha, Olivier Küng, Pascal Fua (Feb 10, 2012). Automatic mapping from ultra-light uav imagery (PDF).{{cite book}}: CS1 maint: multiple names: authors list (link)
  19. Jakub Markiewicz, Dorota Zawieska MDPI "The influence of the cartographic transformation of TLS data on the quality of the automatic registration". Feb 1, 2019.
  20. Hyung Taeck Yoo, Hyunwoo Lee, Seokho Chi, Bon-Gang Hwang, Jinwoo Kim (Mar 3, 2016). A Preliminary Study on Disaster Waste Detection and Volume Estimation based on 3D Spatial Information.{{cite book}}: CS1 maint: multiple names: authors list (link)
  21. Robin Hartley (May 1, 2017). Unmanned aerial vehicles in forestry – reaching for a new perspective (PDF).
  22. Dong Ho Lee, Jong Hwa Park (Jun 30, 2019). Developing Inspection Methodology of Solar Energy Plants by Thermal Infrared Sensor on Board Unmanned Aerial Vehicles.
  23. Bernhard Draeyer / Christoph Strecha (Feb 2014). How accurate are UAV surveying methods?. S2CID 3110690.
  24. Major Kijun. Lee (Mar 22, 2018). Military application of aerial photogrammetry mapping assisted by small unmanned air vehicles (PDF).
  25. Anne Rautio, Kirsti Korkka-Niemi, Veli-Pekka Salonen (Jun 30, 2017). Thermal infrared remote sensing in assessing ground / surface water resources related to the Hannukainen mining development site, Northern Finland (PDF).{{cite book}}: CS1 maint: multiple names: authors list (link)
  26. Jae Kang Lee, Min Jun Kim, Jung Ok Kim, Jin Soo Kim, Tri Dev Acharya, Dong Ha Lee MDPI Lee, Jae Kang; Kim, Min Jun; Kim, Jung Ok; Kim, Jin Soo; Acharya, Tri Dev; Lee, Dong Ha (Nov 15, 2018). "Crack Detection Assisted by an Unmanned Aerial Vehicle for Wonjudaegyo Bridge in Korea". Proceedings. 4: 23. doi:10.3390/ecsa-5-05835.
  27. Daniel Heina, Steven Bayera , Ralf Bergera , Thomas Krafta , Daniela Lesmeisterb (Jun 9, 2017). "An integrated rapid mapping system for disaster management" (PDF). ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 42W1: 499–504. Bibcode:2017ISPAr42W1..499H. doi:10.5194/isprs-archives-XLII-1-W1-499-2017.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. H.A. Follas, D.L Stewart, J. Lester (Apr 3, 2016). Effective post-disaster reconnaissance using unmanned aerial vehicles for emergency response, recovery and research (PDF).{{cite book}}: CS1 maint: multiple names: authors list (link)
  29. Jingxuan Sun, Boyang, Yifan Jiang, Chih-yung Wen MDPI "A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes". Oct 25, 2016.
  30. Dustin W. Gabbert , Mehran Andalibi , Jamey D. Jacob (Sep 7, 2015). System Development for Wildfire SUAS.{{cite book}}: CS1 maint: multiple names: authors list (link)
  31. Lim, Ye Seuli / La, Phu Hien / Park, Jong Soo3 / Lee, Mi Hee / Pyeon, Mu Wook / Kim, Jee-In (Dec 9, 2015). Calculation of Tree Height and Canopy Crown from Drone Images Using Segmentation.{{cite book}}: CS1 maint: multiple names: authors list (link)
  32. E. Prado, F. Sánchez, A. Rodríguez-Basalo, A. Altuna, A. Cobo, ResearchGate Prado, E.; Sánchez, F.; Rodríguez-Basalo, A.; Altuna, A.; Cobo, A. (April 1, 2019). "Semi-automatic method of fan surface assessment to achieve Gorgonian population structure in le Danois bank, Cantabrian sea". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 4210: 167–173. Bibcode:2019ISPAr4210..167P. doi:10.5194/isprs-archives-XLII-2-W10-167-2019.
  33. Fister, W., Goldman, N., Mayer, M., Suter, M., and Kuhn, N. J, Geographica Helvetica Fister, Wolfgang; Goldman, Nina; Mayer, Marius; Suter, Manuel; Kuhn, Nikolaus J. (Mar 15, 2019). "Testing of photogrammetry for differentiation of soil organic carbon and biochar in sandy substrates". Geographica Helvetica. 74 (1): 81–91. doi:10.5194/gh-74-81-2019.
  34. D. Zawieskaa, J. Markiewicza, A. Turek b, K. Bakulaa, M. Kowalczyka, Z. Kurczyńskia, W. Ostrowskia, P. Podlasiaka (Jul 19, 2016). Multi-criteria GIS analyses with the use of UAVs for the needs of spatial planning.{{cite book}}: CS1 maint: multiple names: authors list (link)
  35. R. J. Stone (2015). Keynote paper: Virtual & Augmented reality technologies for applications in cultural heritage: A human factors perspective. S2CID 16678832.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.