Mean dependence

In probability theory, a random variable is said to be mean independent of random variable if and only if its conditional mean equals its (unconditional) mean for all such that the probability density/mass of at , , is not zero. Otherwise, is said to be mean dependent on .

Stochastic independence implies mean independence, but the converse is not true.[1][2]; moreover, mean independence implies uncorrelatedness while the converse is not true. Unlike stochastic independence and uncorrelatedness, mean independence is not symmetric: it is possible for to be mean-independent of even though is mean-dependent on .

The concept of mean independence is often used in econometrics to have a middle ground between the strong assumption of independent random variables () and the weak assumption of uncorrelated random variables

Further reading

  • Cameron, A. Colin; Trivedi, Pravin K. (2009). Microeconometrics: Methods and Applications (8th ed.). New York: Cambridge University Press. ISBN 9780521848053.
  • Wooldridge, Jeffrey M. (2010). Econometric Analysis of Cross Section and Panel Data (2nd ed.). London: The MIT Press. ISBN 9780262232586.

References

  1. Cameron and Trivedi (2009, p. 23)
  2. Wooldridge (2010, pp. 54, 907)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.