Icahn Genomics Institute
The Icahn Genomics Institute is a biomedical and genomics research institute located in New York, NY. It is housed within the Icahn School of Medicine at Mount Sinai. Its aim is to establish a new generation of medicines that can better treat diseases afflicting the world, including cancer, heart disease and infectious pathogens. To do this, the institute’s doctors and scientists are developing and employing new types of treatments that utilize DNA and RNA based therapies, such as CRISPR, siRNA, RNA vaccines, and CAR T cells, and searching for novel drug targets through the use of functional genomics and data science.
Established | 2011 |
---|---|
Research type | Translational research |
Field of research | gene editing, gene therapy, genomics |
Director | Brian Brown |
Address | 1425 Madison Avenue, New York, NY 10029-6501 |
Location | New York, NY |
Affiliations | Icahn School of Medicine at Mount Sinai Mount Sinai Hospital, New York |
Website | https://icahn.mssm.edu/research/genomics-institute |
Goals
The institute’s primary goal is to improve patient care through the use of gene, cell and nucleotide therapies. To achieve this goal, the Institute is formed of a cross-disciplinary mix of clinicians and scientists that include physicians treating patients with the latest generation of gene therapies in the Mount Sinai Health System, biologists developing and testing new drugs and drug platforms, and data scientists working to identify causative agents of disease that can be targeted for therapy by building predictive models that better characterize disease. These models are constructed with multiple layers of biological data, including gene expression, metabolite, DNA, and protein information, and are combined with phenotypic and clinical data, predictive modeling, and probabilistic analysis to try to elucidate the complex mechanisms of disease.
History
The institute was formed in 2011. Eric Schadt was named as founding director of the new institute.[1]
The Icahn Institute for Genomics and Multiscale Biology is slated to receive more than $100 million in funding in its first several years, allocated from a $1 billion capital campaign run by Mount Sinai School of Medicine.[1]
Originally called the Institute for Genomics and Multiscale Biology, it was renamed in 2012 when philanthropist Carl Icahn pledged $200 million to its parent organization, the Icahn School of Medicine at Mount Sinai.[2]
In 2012, the Icahn Institute for Genomics and Multiscale Biology received certification for the first CLIA-approved next-generation sequencing lab in New York City.[3][4]
Institute faculty Andrew Kasarskis, Michael Linderman, George Diaz, Ali Bashir, and Randi Zinberg taught the first class in which Mount Sinai medical students were able to fully sequence and analyze their own genomes.[5]
Institute member Joel Dudley was named one of the 100 most creative people in business in a 2014 list compiled by Fast Company.[6] The magazine said it chose Dudley "for splicing information with quality medical care."
In 2014 the institute, in collaboration with Sage Bionetworks, announced a new project aiming to genotype up to 1 million people with the goal of identifying the rare biological mechanisms that keep people healthy when they have genetic variants that should cause disease.[7][8] The Resilience Project will scan the genomes of healthy people age 30 and older who contribute their DNA to the effort with an initial focus on 127 diseases. Scientists anticipate that finding protective mechanisms for Mendelian diseases will be more straightforward than finding ones for complex or multifactorial diseases.[9][10] Based on an analysis of publicly available data from 600,000 human genomes, scientists involved in the Resilience Project estimate that one person in 15,000 has a mechanism protecting against disease-causing genetic variants.[11]
Research
Research at the institute falls into six broad disease areas:[12]
- Alzheimer's disease
- Cancer
- Asthma and allergies
- Infectious disease
- Psychiatric genomics
- Human microbiome
Scientists from the institute published a paper in Nature Genetics in 2012 demonstrating the ability to derive enough information from non-DNA sources to identify individuals whose supposedly anonymized biological data is stored in large research databases.[13] The authors reported that measuring RNA levels in tissue allowed them to infer a genetic barcode that could be used to match other materials to that same individual. This was noteworthy as validation of existing concerns among genomics scientists that it may not be possible to prevent the identification of an individual from genetic data even when that data is meant to be anonymous.
In a PLoS Biology paper, institute founding director Eric Schadt led a research team that utilized six different types of data (metabolite concentration, gene expression, DNA variation, DNA-protein binding, protein-metabolite interaction, and protein-protein interaction) to reconstruct networks involved in cell regulation.[14]
Data scientist Jeffrey Hammerbacher from Cloudera joined the institute in 2012 as an assistant professor. In an interview with Charlie Rose he said that his goal is to establish scalable infrastructure for data storage and analysis and to use that foundation to integrate genomic data with existing health records and improve the quality of health care.[15]
In 2013, institute scientists published a paper in the journal Cell reporting findings from a network-based study of late-onset Alzheimer's disease. The researchers constructed gene regulatory networks and discovered a neural structure involved in a pathway associated with onset of the disease.[16]
The institute has established a research program to use predictive network modeling for personalized cancer therapy. Scientists in the program combine DNA, RNA, copy number variation, and other data from individual patients, and test some of the detected mutations in fly models. The goal is to find the driver mutations of each patient’s data and recommend specific treatments based on that information. By March 2013, the program had worked on seven cases with more planned.[17] One of the cases, that of Stephanie Lee, was publicized in an article in Esquire reporting on how the scientists implanted tumor cells into a fly and then found an existing medication that knocked out the tumor in the models.[18][19]
Similarly, the institute will work with Mount Sinai’s rare disorder clinic to study how single-gene diseases interact with other biomolecular processes by measuring and analyzing molecular, cellular, and tissue networks along with environmental response information.[3]
In January 2014, scientists from the institute’s Division of Psychiatric Genomics including Pamela Sklar published two papers in the journal Nature that explored the genetic complexity of schizophrenia.[20][21] The exome sequencing studies of populations in Bulgaria and Sweden revealed that the disorder is likely caused by a lot of rare genetic mutations rather than a few common mutations.[22][23] The projects also established the world’s largest database on schizophrenia.
Leadership
The Icahn Genomics Institute is currently directed by Dr. Brian Brown, Professor of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai. Dr. Brown is a leading expert in gene therapy and genetic engineering and in molecular immunology.
References
- "Archived copy". Archived from the original on 2012-01-11. Retrieved 2013-05-29.
{{cite web}}
: CS1 maint: archived copy as title (link) - "Carl Icahn to Give $200 Million to Mount Sinai School". Bloomberg.com. 2012-11-15. Retrieved 2020-10-29.
{{cite web}}
: CS1 maint: url-status (link) - Schadt, E. (2012). "Eric Schadt". Nature Biotechnology. 30 (8): 769–770. doi:10.1038/nbt.2331. PMID 22871721.
- "Q&A: Mount Sinai's Milind Mahajan on Running a CLIA-Certified Genomics Core Facility". 8 January 2013.
- "The New York Genome Center".
- "Joel Dudley". 2014-05-12.
- Friend, S. H.; Schadt, E. E. (2014). "Clues from the resilient". Science. 344 (6187): 970–972. Bibcode:2014Sci...344..970F. doi:10.1126/science.1255648. PMID 24876479.
- "Archived copy". Archived from the original on 2014-08-03. Retrieved 2014-08-18.
{{cite web}}
: CS1 maint: archived copy as title (link) - ""Genetic Heroes" May be Key to Treating Debilitating Diseases". Scientific American.
- "How Healthy People Who Should be Sick Could Revolutionize Medicine". Business Insider.
- "The Search for Genes That Prevent Disease". The Atlantic. 2014-05-29.
- "Icahn Institute - Genetics & Genomic Sciences | Icahn School of Medicine".
- Schadt, Eric E.; Woo, Sangsoon; Hao, Ke (2012). "Bayesian method to predict individual SNP genotypes from gene expression data". Nature Genetics. 44 (5): 603–608. doi:10.1038/ng.2248. PMID 22484626. S2CID 205345481.
- Zhu, Jun; Sova, Pavel; Xu, Qiuwei; Dombek, Kenneth M.; Xu, Ethan Y.; Vu, Heather; Tu, Zhidong; Brem, Rachel B.; Bumgarner, Roger E.; Schadt, Eric E. (2012). "Stitching together Multiple Data Dimensions Reveals Interacting Metabolomic and Transcriptomic Networks That Modulate Cell Regulation". PLOS Biology. 10 (4): e1001301. doi:10.1371/journal.pbio.1001301. PMC 3317911. PMID 22509135.
- "Archived copy". Archived from the original on 2013-05-26. Retrieved 2013-05-29.
{{cite web}}
: CS1 maint: archived copy as title (link) - "Archived copy". Archived from the original on 2013-07-13. Retrieved 2013-05-29.
{{cite web}}
: CS1 maint: archived copy as title (link) - "The New York Genome Center". Archived from the original on 2013-07-13. Retrieved 2013-05-29.
- "There's a Whole New Way of Killing Cancer". 2013-11-20.
- "War widow "finds purpose" following Stage 4 cancer diagnosis". CBS News.
- O’Donovan, Michael C.; Purcell, Shaun M.; Owen, Michael J.; Sklar, Pamela; Holmans, Peter; McCarroll, Steven A.; Palotie, Aarno; Kirov, George; Moran, Jennifer L.; Scolnick, Edward M.; Mahajan, Milind; Chambert, Kimberly; Rose, Samuel A.; Hannon, Eilis; Grant, Seth G.; Vihra Milanova; Banks, Eric; Barker, Douglas D.; Roussos, Panos; Johnson, Jessica S.; Humphreys, Isla; Carrera, Noa; Ruderfer, Douglas M.; Palta, Priit; Rees, Elliott; Georgieva, Lyudmila; Gormley, Padhraig; Dwyer, Sarah; Williams, Hywel J.; Kavanagh, David H.; Pocklington, Andrew J.; Fromer, Menachem (1 February 2014). "De novo mutations in schizophrenia implicate synaptic networks". Nature. 506 (7487): 179–184. Bibcode:2014Natur.506..179F. doi:10.1038/nature12929. PMC 4237002. PMID 24463507.
- Sklar, Pamela; McCarroll, Steven A.; Sullivan, Patrick F.; Hultman, Christina M.; Lander, Eric S.; Scolnick, Edward M.; Gabriel, Stacey; Haggarty, Stephen J.; Grant, Seth G. N.; DePristo, Mark; Fennell, Tim; Garimella, Kiran; Shakir, Khalid; Banks, Eric; Magnusson, Patrik K. E.; Jyoti S. Choudhary; Komiyama, Noboru H.; Collins, Mark O.; Fernández, Esperanza; Genovese, Giulio; Stahl, Eli; Duncan, Laramie; Kähler, Anna; Bergen, Sarah E.; Chambert, Kimberly; O’Dushlaine, Colm; Roussos, Panos; Solovieff, Nadia; Ruderfer, Douglas; Fromer, Menachem; Moran, Jennifer L.; Purcell, Shaun M. (1 February 2014). "A polygenic burden of rare disruptive mutations in schizophrenia". Nature. 506 (7487): 185–190. Bibcode:2014Natur.506..185P. doi:10.1038/nature12975. PMC 4136494. PMID 24463508.
- "Bio-IT World". www.bio-itworld.com.
- "Schizophrenia could be caused by a wide variety of DNA mutations". 2014-01-22.