IEEE 802.11be

IEEE 802.11be Extremely High Throughput (EHT) is the potential next amendment of the 802.11 IEEE standard,[4] which will likely be designated Wi-Fi 7.[5][6] It will build upon 802.11ax, focusing on WLAN indoor and outdoor operation with stationary and pedestrian speeds in the 2.4, 5, and 6 GHz frequency bands.[7] Speeds are expected to reach 40 Gbps, equaling Thunderbolt 3.[8]

Wi-Fi Generations
Generation IEEE
Standard
Maximum
Linkrate
(Mbit/s)
Adopted Radio
Frequency
(GHz)[1]
Wi‑Fi 7 802.11be 40000 TBA 2.4/5/6
Wi‑Fi 6E 802.11ax 600 to 9608 2020 2.4/5/6
Wi‑Fi 6 2019 2.4/5
Wi‑Fi 5 802.11ac 433 to 6933 2014 5
Wi‑Fi 4 802.11n 72 to 600 2008 2.4/5
(Wi-Fi 3*) 802.11g 6 to 54 2003 2.4
(Wi-Fi 2*) 802.11a 6 to 54 1999 5
(Wi-Fi 1*) 802.11b 1 to 11 1999 2.4
(Wi-Fi 0*) 802.11 1 to 2 1997 2.4
*: (Wi-Fi 0, 1, 2, 3, are unbranded common usage.[2][3])

Development of the 802.11be amendment is ongoing, with a goal of an initial draft by March 2021, and a final version expected by early 2024.[6]

Candidate features

The main candidate features mentioned in the 802.11be Project Authorization Request (PAR) are:[9]

  • 320 MHz bandwidth and more efficient utilization of non-contiguous spectrum,
  • Multi-band/multi-channel aggregation and operation,
  • 16 spatial streams and Multiple Input Multiple Output (MIMO) protocols enhancements,
  • Multi-Access Point (AP) Coordination (e.g. coordinated and joint transmission),
  • Enhanced link adaptation and retransmission protocol (e.g. Hybrid Automatic Repeat Request (HARQ)),
  • If needed, adaptation to regulatory rules specific to 6 GHz spectrum,
  • Integrating Time-Sensitive Networking (TSN) IEEE 802.1Q extensions for low-latency real-time traffic:[10][11]
    • IEEE 802.1AS timing and synchronisation
    • IEEE 802.11aa MAC Enhancements for Robust Audio Video Streaming (Stream Reservation Protocol over IEEE 802.11)
    • IEEE 802.11ak Enhancements for Transit Links Within Bridged Networks (802.11 links in 802.1Q networks)
    • Bounded latency: credit-based (IEEE 802.1Qav) and cyclic/time-aware traffic shaping (IEEE 802.1Qch/Qbv), asynchronous traffic scheduling (IEEE 802.1Qcr-2020)
    • IEEE 802.11ax Scheduled Operation extensions for reduced jitter/latency

Additional features

Apart from the features mentioned in the PAR, there are newly introduced features:[12]

  • Newly introduced 4096-QAM (4K-QAM),
  • Contiguous and non-contiguous 320/160+160 MHz and 240/160+80 MHz bandwidth,
  • Frame formats with improved forward-compatibility,
  • Enhanced resource allocation in OFDMA,
  • Optimized channel sounding that requires less airtime,
  • Implicit channel sounding,
  • More flexible preamble puncturing scheme,
  • Support of direct links, managed by an access point.

Comparison

Frequency
range, or type
PHY Protocol Release date[13] Frequency Bandwidth Stream data rate[14] Allowable
MIMO streams
Modulation Approximate range
Indoor Outdoor
(GHz) (MHz) (Mbit/s)
1–6 GHz DSSS/FHSS[15] 802.11-1997 Jun 1997 2.4 22 1, 2 N/A DSSS, FHSS 20 m (66 ft) 100 m (330 ft)
HR-DSSS[15] 802.11b Sep 1999 2.4 22 1, 2, 5.5, 11 N/A DSSS 35 m (115 ft) 140 m (460 ft)
OFDM 802.11a Sep 1999 5 5/10/20 6, 9, 12, 18, 24, 36, 48, 54
(for 20 MHz bandwidth,
divide by 2 and 4 for 10 and 5 MHz)
N/A OFDM 35 m (115 ft) 120 m (390 ft)
802.11j Nov 2004 4.9/5.0[D][16] ? ?
802.11p Jul 2010 5.9 ? 1,000 m (3,300 ft)[17]
802.11y Nov 2008 3.7[A] ? 5,000 m (16,000 ft)[A]
ERP-OFDM 802.11g Jun 2003 2.4 38 m (125 ft) 140 m (460 ft)
HT-OFDM[18] 802.11n
(Wi-Fi 4)
Oct 2009 2.4/5 20 Up to 288.8[B] 4 MIMO-OFDM 70 m (230 ft) 250 m (820 ft)[19]
40 Up to 600[B]
VHT-OFDM[18] 802.11ac
(Wi-Fi 5)
Dec 2013 5 20 Up to 346.8[B] 8 MIMO-OFDM 35 m (115 ft)[20] ?
40 Up to 800[B]
80 Up to 1733.2[B]
160 Up to 3466.8[B]
HE-OFDMA 802.11ax
(Wi-Fi 6)
Feb 2021 2.4/5/6 20 Up to 1147[F] 8 MIMO-OFDM 30 m (98 ft) 120 m (390 ft) [G]
40 Up to 2294[F]
80 Up to 4804[F]
80+80 Up to 9608[F]
mmWave DMG[21] 802.11ad Dec 2012 60 2,160 Up to 6,757[22]
(6.7 Gbit/s)
N/A OFDM, single carrier, low-power single carrier 3.3 m (11 ft)[23] ?
802.11aj Apr 2018 45/60[C] 540/1,080[24] Up to 15,000[25]
(15 Gbit/s)
4[26] OFDM, single carrier[26] ? ?
EDMG[27] 802.11ay Est. March 2021 60 8000 Up to 20,000 (20 Gbit/s)[28] 4 OFDM, single carrier 10 m (33 ft) 100 m (328 ft)
Sub-1 GHz IoT TVHT[29] 802.11af Feb 2014 0.054–0.79 6–8 Up to 568.9[30] 4 MIMO-OFDM ? ?
S1G[29] 802.11ah Dec 2016 0.7/0.8/0.9 1–16 Up to 8.67 (@2 MHz)[31] 4 ? ?
2.4 GHz, 5 GHz WUR 802.11ba[E] Oct 2021 2.4/5 4.06 0.0625, 0.25 (62.5 kbit/s, 250 kbit/s) N/A OOK (Multi-carrier OOK) ? ?
Light (Li-Fi) IR 802.11-1997 Jun 1997 ? ? 1, 2 N/A PPM ? ?
? 802.11bb Est. Jul 2022 60000-790000 ? ? N/A ? ? ?
802.11 Standard rollups
  802.11-2007 Mar 2007 2.4, 5 Up to 54 DSSS, OFDM
802.11-2012 Mar 2012 2.4, 5 Up to 150[B] DSSS, OFDM
802.11-2016 Dec 2016 2.4, 5, 60 Up to 866.7 or 6,757[B] DSSS, OFDM
802.11-2020 Dec 2020 2.4, 5, 60 Up to 866.7 or 6,757[B] DSSS, OFDM
  • A1 A2 IEEE 802.11y-2008 extended operation of 802.11a to the licensed 3.7 GHz band. Increased power limits allow a range up to 5,000 m. As of 2009, it is only being licensed in the United States by the FCC.
  • B1 B2 B3 B4 B5 B6 Based on short guard interval; standard guard interval is ~10% slower. Rates vary widely based on distance, obstructions, and interference.
  • C1 For Chinese regulation.
  • D1 For Japanese regulation.
  • E1 Wake-up Radio (WUR) Operation.
  • F1 F2 F3 F4 For single-user cases only, based on default guard interval which is 0.8 micro seconds. Since multi-user via OFDMA has become available for 802.11ax, these may decrease. Also, these theoretical values depend on the link distance, whether the link is line-of-sight or not, interferences and the multi-path components in the environment.
  • G1 The default guard interval is 0.8 micro seconds. However, 802.11ax extended the maximum available guard interval to 3.2 micro seconds, in order to support Outdoor communications, where the maximum possible propagation delay is larger compared to Indoor environments.

References

  1. 802.11ac only specifies operation in the 5 GHz band. Operation in the 2.4 GHz band is specified by 802.11n.
  2. Kastrenakes, Jacob (2018-10-03). "Wi-Fi now has version numbers, and Wi-Fi 6 comes out next year". The Verge. Retrieved 2019-05-02.
  3. "Wi-Fi Generation Numbering". ElectronicNotes. Retrieved November 10, 2021.
  4. "IEEE P802.11 EXTREMELY HIGH THROUGHPUT Study Group". www.ieee802.org. Retrieved 2019-05-20.
  5. Shankland, Stephen (2019-09-03). "Wi-Fi 6 is barely here, but Wi-Fi 7 is already on the way - With improvements to Wi-Fi 6 and its successor, Qualcomm is working to boost speeds and overcome congestion on wireless networks". CNET. Retrieved 2020-08-20.
  6. Khorov, Evgeny (2020-05-08). "Current Status and Directions of IEEE 802.11be, the Future Wi-Fi 7". IEEE. 8: 88664–88688. doi:10.1109/ACCESS.2020.2993448. S2CID 218834597. Retrieved 2020-08-20.
  7. López-Pérez, David (12 Feb 2019). "IEEE 802.11be - Extremely High Throughput: The Next Generation of Wi-Fi Technology Beyond 802.11ax". arXiv:1902.04320 [cs.IT].
  8. "MediaTek Demos Next-Gen Wi-Fi 7 Standard Boasting Near Thunderbolt 3 Speeds - MacRumors". 2022-02-08. Archived from the original on 8 February 2022. Retrieved 2022-02-08.
  9. "802.11be Project Authorization Request (PAR)".
  10. https://www.ieee802.org/1/files/public/docs2021/dj-seewald-wireless-tsn-0721-v01.pdf
  11. https://datatracker.ietf.org/meeting/106/materials/slides-106-raw-04-ieee-status-00
  12. E. Khorov, I. Levitsky, I. F. Akyildiz (2020). "Current Status and Directions of IEEE 802.11be, the Future Wi-Fi 7". IEEE Access. IEEE. 8 (in press): 88664–88688. doi:10.1109/ACCESS.2020.2993448.{{cite journal}}: CS1 maint: uses authors parameter (link)
  13. "Official IEEE 802.11 working group project timelines". January 26, 2017. Retrieved 2017-02-12.
  14. "Wi-Fi CERTIFIED n: Longer-Range, Faster-Throughput, Multimedia-Grade Wi-Fi® Networks" (PDF). Wi-Fi Alliance. September 2009.
  15. Banerji, Sourangsu; Chowdhury, Rahul Singha. "On IEEE 802.11: Wireless LAN Technology". arXiv:1307.2661.
  16. "The complete family of wireless LAN standards: 802.11 a, b, g, j, n" (PDF).
  17. Abdelgader, Abdeldime M.S.; Wu, Lenan (2014). The Physical Layer of the IEEE 802.11p WAVE Communication Standard: The Specifications and Challenges (PDF). World Congress on Engineering and Computer Science.
  18. Wi-Fi Capacity Analysis for 802.11ac and 802.11n: Theory & Practice
  19. Belanger, Phil; Biba, Ken (2007-05-31). "802.11n Delivers Better Range". Wi-Fi Planet. Archived from the original on 2008-11-24.
  20. "IEEE 802.11ac: What Does it Mean for Test?" (PDF). LitePoint. October 2013. Archived from the original (PDF) on 2014-08-16.
  21. "IEEE Standard for Information Technology--Telecommunications and information exchange between systems Local and metropolitan area networks--Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput to Support Chinese Millimeter Wave Frequency Bands (60 GHz and 45 GHz)". IEEE Std 802.11aj-2018. April 2018. doi:10.1109/IEEESTD.2018.8345727.
  22. "802.11ad - WLAN at 60 GHz: A Technology Introduction" (PDF). Rohde & Schwarz GmbH. November 21, 2013. p. 14.
  23. "Connect802 - 802.11ac Discussion". www.connect802.com.
  24. "Understanding IEEE 802.11ad Physical Layer and Measurement Challenges" (PDF).
  25. "802.11aj Press Release".
  26. Hong, Wei; He, Shiwen; Wang, Haiming; Yang, Guangqi; Huang, Yongming; Chen, Jixing; Zhou, Jianyi; Zhu, Xiaowei; Zhang, Nianzhu; Zhai, Jianfeng; Yang, Luxi; Jiang, Zhihao; Yu, Chao (2018). "An Overview of China Millimeter-Wave Multiple Gigabit Wireless Local Area Network System". IEICE Transactions on Communications. E101.B (2): 262–276. doi:10.1587/transcom.2017ISI0004.
  27. "IEEE 802.11ay: 1st real standard for Broadband Wireless Access (BWA) via mmWave – Technology Blog". techblog.comsoc.org.
  28. Sun, Rob; Xin, Yan; Aboul-Maged, Osama; Calcev, George; Wang, Lei; Au, Edward; Cariou, Laurent; Cordeiro, Carlos; Abu-Surra, Shadi; Chang, Sanghyun; Taori, Rakesh; Kim, TaeYoung; Oh, Jongho; Cho, JanGyu; Motozuka, Hiroyuki; Wee, Gaius. "P802.11 Wireless LANs". IEEE. pp. 2, 3. Archived from the original on 2017-12-06. Retrieved December 6, 2017.
  29. "802.11 Alternate PHYs A whitepaper by Ayman Mukaddam" (PDF).
  30. Lee, Wookbong; Kwak, Jin-Sam; Kafle, Padam; Tingleff, Jens; Yucek, Tevfik; Porat, Ron; Erceg, Vinko; Lan, Zhou; Harada, Hiroshi (2012-07-10). "TGaf PHY proposal". IEEE P802.11. Retrieved 2013-12-29.
  31. Sun, Weiping; Choi, Munhwan; Choi, Sunghyun (July 2013). "IEEE 802.11ah: A Long Range 802.11 WLAN at Sub 1 GHz" (PDF). Journal of ICT Standardization. 1 (1): 83–108. doi:10.13052/jicts2245-800X.115.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.