2022 in paleontology
Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2022.
2022 in science |
---|
2023 |
Fields |
Extraterrestrial environment |
Terrestrial environment |
Other/related |
| |||
---|---|---|---|
Flora
Plants
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Other
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Reptamsassia[2] |
Gen. et 2 sp. nov |
In press |
Lee, Elias & Pratt |
A calcareous alga (possibly green alga) related to Amsassia. Genus includes new species R. divergens and R. minuta. |
||||
Research
- Sforna et al. (2022) report the discovery of bound nickel-tetrapyrrole moieties preserved within cells of a ~1-billion-years-old eukaryote Arctacellularia tetragonala from the BII Group of the Mbuji-Mayi Supergroup (Democratic Republic of the Congo), identify the tetrapyrrole moieties as chlorophyll derivatives, and interpret A. tetragonala as one of the earliest known multicellular algae.[3]
- A study on the mode of preservation of macroalgae and associated filamentous microfossils from the Tonian Dolores Creek Formation (Yukon, Canada) is published by Maloney et al. (2022).[4]
- Retallack (2022) argues that Late Silurian and Early Devonian nematophytes would have towered over land plants from the same fossil plant assemblages, including vascular plant trees, that nematophytes were branched and formed closed canopies, that there were extensive networks of nutrient-gathering glomeromycotan mycorrhizae in Ordovician to Devonian paleosols, and that the environment with nematophytes as the tallest elements of terrestrial vegetation and soils riddled with mycorrhizae may have nurtured, sheltered and facilitated the evolution of early land plants.[5]
Cnidarians
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Corwenia tirhelensis[6] |
Sp. nov |
In press |
Rodríguez et al. |
Tirhela Formation |
A rugose coral belonging to the family Aulophyllidae. |
|||
Glyptoconularia antiatlasica[7] |
Sp. nov |
Valid |
Van Iten, Gutiérrez-Marco & Cournoyer |
Taddrist Formation |
A conulariid. |
|||
Ilankirus[8] |
Gen. et sp. nov |
Valid |
Sarsembaev & Marusin |
A conulariid. Genus includes new species I. kessyusensis. |
||||
Lafustalcyon[9] |
Gen. et sp. nov |
In press |
Denayer et al. |
Carboniferous (Serpukhovian) |
An alcyonacean octocoral. Genus includes new species L. vachardi. |
|||
Semenomalophyllia[9] |
Gen. nov |
In press |
Denayer et al. |
Carboniferous (Serpukhovian) |
A colonial heterocoral. Genus includes S. herbigi, S. perretae, S. weyeri and S. webbi. |
|||
Septuconularia crassiformis[10] |
Sp. nov |
In press |
Song et al. |
A member of the family Hexangulaconulariidae. |
||||
Stylomaeandra neuquensis[11] |
Sp. nov |
In press |
Garberoglio, Löser & Lazo |
A stony coral belonging to the family Latomeandridae. |
||||
Sp. nov |
In press |
Ohar |
Carboniferous (Mississippian) |
A tabulate coral. |
||||
Research
- A study on the taphonomy and systematics of conulariid specimens from the Silurian (Telychian) Waukesha Lagerstätte (Wisconsin, United States) is published by Miller et al. (2022).[13]
- Wang et al. (2022) describe phosphatized muscle fibers preserved in three dimensions in post-embryonic stages of olivooids from the Cambrian (Fortunian) Kuanchuanpu Formation (China) – representing the oldest occurrence of muscle tissue in cnidarians, and in animals in general, reported to date – and evaluate the implications of this finding and fossil evidence from ecdysozoans for the knowledge of the evolution of the muscle systems of early animals.[14]
- A study on changes in the functional diversity of tabulate coral assemblages across the Devonian and early Carboniferous, and on their implications for the knowledge of the impact of extinction events from this time period on tabulate corals, is published by Bridge et al. (2022).[15]
Arthropods
Bryozoans
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Burdwoodipora griffini[16] |
Sp. nov |
Valid |
Pérez & López-Gappa |
Miocene (Burdigalian) |
Monte León Formation |
|||
Sp. nov |
Valid |
Ernst |
Ordovician (Darriwilian) |
A member of Stenolaemata belonging to the superorder Palaeostomata, the order Esthonioporata and the family Dianulitidae. |
||||
Odontoporella miocenica[16] |
Sp. nov |
Valid |
Pérez & López-Gappa |
Miocene (Burdigalian) |
Monte León Formation |
|||
Pakripora[17] |
Gen. et sp. nov |
Valid |
Ernst |
Ordovician (Darriwilian) |
A member of Trepostomata of uncertain phylogenetic placement. The type species is P. cavernosa. |
|||
Thalamoporella badvei[18] |
Sp. nov |
Valid |
Sonar, Pawar & Wayal |
Miocene (Aquitanian) |
Kharinadi Formation |
A species of Thalamoporella. |
||
Thalamoporella bhujensis[18] |
Sp. nov |
Valid |
Sonar, Pawar & Wayal |
Miocene (Aquitanian) |
Kharinadi Formation |
A species of Thalamoporella. |
||
Research
- Fossils which might represent the oldest bryozoans with calcareous skeletons reported to date are described from the Cambrian Harkless Formation (Nevada, United States) by Pruss et al. (2022).[19]
- A study on the diversity of bryozoans from the Ordovician (Tremadocian) Fenhsiang Formation (China) is published by Ma et al. (2022).[20]
- A study on the diversification dynamics of cheilostome bryozoans since the Late Jurassic is published by Moharrek et al. (2022).[21]
- A study on the phylogenetic relationships and evolutionary history of cheilostome bryozoans is published by Orr et al. (2022), who interpret their findings as indicating that named cheilostome genera and species are natural groupings, and that skeletal traits can be used to assign fossil or contemporary specimens to cheilostome species.[22]
Brachiopods
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Altynorthis[23] |
Gen. et 2 sp. et comb. nov |
In press |
Popov & Cocks |
Berkutsyur Formation |
A member of the family Plectorthidae. The type species is A. vinogradovae; genus also includes new species A. betpakdalensis, as well as "Hesperorthis" tabylgatensis Misius (1986). |
|||
Apatomorpha akbakaiensis[23] |
Sp. nov |
In press |
Popov & Cocks |
Ordovician |
||||
Aploobolus[23] |
Gen. et sp. nov |
In press |
Popov & Cocks |
Ordovician (Sandbian) |
Kopkurgan Formation |
A member of the family Obolidae. The type species is A. tenuis. |
||
Aramazdospirifer[24] |
Gen. et comb. nov |
Valid |
Serobyan et al. |
Devonian (Famennian) |
A member of the family Cyrtospiriferidae. The type species is "Spirifer" orbelianus Abich (1858). |
|||
Arzonellina bogicae[25] |
Sp. nov |
In press |
Vörös |
Early Jurassic (Sinemurian?) |
Brachiopodal Hierlatz Limestone |
A member of Terebratulida belonging to the family Arzonellinidae. |
||
Baitalorhyncha[23] |
Gen. et sp. nov |
In press |
Popov & Cocks |
Ordovician |
A member of the family Sphenotretidae. The type species is B. rectimarginata. |
|||
Bimuria karatalensis[23] |
Sp. nov |
In press |
Popov & Cocks |
Ordovician |
A member of the family Bimuriidae. |
|||
Costistriispira[23] |
Gen. et sp. nov |
In press |
Popov & Cocks |
Ordovician (Sandbian) |
Kopkurgan Formation |
A member of Lissatrypoidea belonging to the family Kellerellidae. The type species is C. proavia. |
||
Doughlatomena[23] |
Gen. et sp. nov |
In press |
Popov & Cocks |
Ordovician |
A member of the family Rafinesquinidae. The type species is D. splendens. |
|||
Eiratrypa[26] |
Gen. et comb. nov |
Valid |
Baarli |
A member of the family Atrypidae. The type species is "Protatrypa" thorslundi Boucot & Johnson (1964); genus also includes "Atrypa" orbicularis Sowerby (1839) and "Atrypa" antiqua Kulkov in Kulkov & Severgina (1989). |
||||
Kassinella simorini[23] |
Sp. nov |
In press |
Popov & Cocks |
Ordovician |
Berkutsyur Formation |
|||
Lepidomena betpakdalensis[23] |
Sp. nov |
In press |
Popov & Cocks |
Ordovician |
||||
Lictorthis[23] |
Gen. et comb. nov |
In press |
Popov & Cocks |
Ordovician |
A member of the family Plectorthidae. The type species is "Plectorthis" licta Popov & Cocks (2006). |
|||
Lydirhyncha[23] |
Gen. et comb. nov |
In press |
Popov & Cocks |
Ordovician |
A member of the family Ancistrorhynchidae. The type species is "Rhynchotrema" zhejiangensis Wang in Wang & Jin (1964); genus also includes "Rhynchotrema" gushanensis Liang in Liu et al. (1983) and "Rhynchotrema" tarimensis Sproat & Zhan (2018). |
|||
Pentagonospirifer[27] |
Gen. et sp. nov |
Valid |
Serobyan et al. |
Devonian (Famennian) |
A cyrtospiriferid brachiopod. The type species is P. abrahamyanae. |
|||
Phaceloorthis? corrugata[23] |
Sp. nov |
In press |
Popov & Cocks |
Ordovician |
||||
Prodavidsonia ebbighauseni[28] |
Sp. nov |
Valid |
Halamski & Baliński in Halamski, Baliński & Koppka |
Taboumakhlouf Formation |
A member of the family Davidsoniidae. |
|||
Sonculina baigarensis[23] |
Sp. nov |
In press |
Popov & Cocks |
Ordovician |
||||
Spinatrypa ennigaldinannae[28] |
Sp. nov |
Valid |
Halamski & Baliński in Halamski, Baliński & Koppka |
Devonian (Eifelian) |
Taboumakhlouf Formation |
A member of the family Atrypidae. |
||
Testaprica alperovichi[23] |
Sp. nov |
In press |
Popov & Cocks |
Ordovician |
||||
Tornatospirifer[27] |
Gen. et comb. nov |
Valid |
Serobyan et al. |
Devonian (Famennian) |
A cyrtospiriferid brachiopod. The type species is T. armenicus. |
|||
Research
- A study on the phylogenetic relationships and biogeography of members of the family Nisusiidae is published by Oh et al. (2022).[29]
Molluscs
Echinoderms
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Angulocrinus tomaszi[30] |
Sp. nov |
Valid |
Zamora |
Yatova Formation |
A crinoid belonging to the group Millericrinida and the family Millericrinidae. |
|||
Arauricystis clariondi[31] |
Sp. nov |
In press |
Lefebvre et al. |
Ordovician |
||||
Bohemiaecystis chouberti[31] |
Sp. nov |
In press |
Lefebvre et al. |
Ordovician |
A cornute stylophoran. |
|||
Codiacrinus sevastopuloi[32] |
Sp. nov |
Valid |
Ausich et al. |
Devonian (Emsian) |
A cyathoform cladid crinoid. |
|||
Destombesicarpus[31] |
Gen. et 2 sp. nov |
In press |
Lefebvre et al. |
Ordovician |
A cornute stylophoran. Genus includes new species D. izegguirenensis and D. budili. |
|||
Diamphidiocystis regnaulti[33] |
Sp. nov |
In press |
Lefebvre et al. |
Ordovician |
An anomalocystitid mitrate. |
|||
Exallocrinus[34] |
Gen. et sp. nov |
In press |
Webster, Heward & Ausich |
Khuff Formation |
A crinoid, possibly a member of the family Ampelocrinidae. The type species is E. khuffensis. |
|||
Furculaster[35] |
Gen. et sp. nov |
In press |
Gale |
Late Cretaceous |
Europe |
A starfish belonging to the family Korethrasteridae. Genus includes new species F. cretae. |
||
Kutscheraster[35] |
Gen. et sp. nov |
In press |
Gale |
Late Cretaceous (Maastrichtian) |
A starfish belonging to the group Velatida. Genus includes new species K. ruegenensis. |
|||
Milonicystis reboulorum[31] |
Sp. nov |
In press |
Lefebvre et al. |
Ordovician |
A cornute stylophoran. |
|||
Muldaster[36] |
Gen. et sp. nov |
Valid |
Thuy, Eriksson & Numberger-Thuy in Thuy et al. |
Halla Formation |
A brittle star. The type species is M. haakei. |
|||
Neobothriocidaris pentlandensis[37] |
Sp. nov |
In press |
Thompson et al. |
Silurian |
A sea urchin. |
|||
Ohiocrinus byeongseoni[38] |
Sp. nov |
Valid |
Park et al. |
Ordovician (Darriwilian) |
Jigunsan Formation |
A cincinnaticrinid crinoid. |
||
Ophiodoris niersteinensis[39] |
Sp. nov |
Valid |
Thuy, Nungesser & Numberger-Thuy |
Oligocene (Rupelian) |
Bodenheim Formation |
A brittle star belonging to the family Ophionereididae. |
||
Ophiopetagno[36] |
Gen. et sp. nov |
Valid |
Thuy, Eriksson & Numberger-Thuy in Thuy et al. |
Silurian (Wenlock) |
A brittle star. The type species is O. paicei. |
|||
Ophiura pohangensis[40] |
Sp. nov |
Valid |
Ishida et al. |
Duho Formation |
A species of Ophiura. |
|||
Ophiura tankardi[39] |
Sp. nov |
Valid |
Thuy, Nungesser & Numberger-Thuy |
Oligocene (Rupelian) |
Bodenheim Formation |
A species of Ophiura. |
||
Orthopsis kiseljaki[41] |
Sp. nov |
Valid |
Stecher |
A sea urchin belonging to the group Carinacea and the family Orthopsidae. |
||||
Parahybocrinus[42] |
Gen. et sp. nov |
Valid |
Guensburg & Sprinkle |
A cladid crinoid belonging to the group Hybocrinida. The type species is P. siewersi. |
||||
Syndiasmocrinus[42] |
Gen. et sp. nov |
Valid |
Guensburg & Sprinkle |
Ordovician (Floian) |
A cladid crinoid belonging to the group Hybocrinida. The type species is S. apokalypto. |
|||
Thoralicarpus[31] |
Gen. et 2 sp. nov |
In press |
Lefebvre et al. |
Ordovician |
A cornute stylophoran. Genus includes new species T. bounemrouensis and T. prokopi. |
|||
Yorkicystis[43] |
Gen. et sp. nov |
Zamora et al. |
Cambrian |
An edrioasteroid. The type species is Y. haefneri. |
||||
Research
- A study on the evolution of the anatomy and life habits of Cambrian–Ordovician echinoderms is published by Novack-Gottshall et al. (2022).[44]
- A study on the morphology and paleoecology of calceocrinid crinoids is published by Ausich (2022).[45]
- A study on the phylogeny and divergence times of major lineages of sea urchins, comparing phylogenomic data with the fossil record, is published by Mongiardino Koch et al. (2022).[46]
Conodonts
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Belodella salairica[47] |
Sp. nov |
Valid |
Izokh |
|||||
Caudicriodus yolkini[47] |
Sp. nov |
Valid |
Izokh |
Devonian |
||||
Juanognathus? denticulatus[48] |
Sp. nov |
In press |
Zhen, Allen & Martin |
Early Ordovician |
Nambeet Formation |
|||
Research
- A study aiming to determine whether co-occurring Silurian conodont species from the Gotland succession in Sweden occupied different trophic niches is published by Terrill et al. (2022).[49]
- A synthesis on the conodont occurrences along northern Gondwana at the Silurian/Devonian boundary is published by Ferretti et al. (2022).[50]
- A study on the morphological variation of elements of the apparatus of Icriodus alternatus is published by Girard et al. (2022), who interpret their findings as indicating that subspecies of this species described for the end Frasnian and early Famennian constitute end-member morphologies characterizing different growth stages.[51]
- A study comparing conodont diversity dynamics in Northeast Laurussia and Northeast Siberia during the Tournaisian, and evaluating its implications for the knowledge of the causes of the extinction among conodonts during the middle–late Tournaisian transition, is published by Zhuravlev & Plotitsyn (2022).[52]
- A study on the apparatus composition of Lochriea commutata, and on its implications for the assignments of other Carbonifeous conodont species to the genus Lochriea, is published by von Bitter, Norby & Stamm (2022).[53]
Fish
Amphibians
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
In press |
Carrano et al. |
Early Cretaceous |
|||||
Rhinella xerophylla[55] |
Sp. nov |
In press |
Ponssa et al. |
Late Pliocene |
Uquía Formation |
A toad, a species of Rhinella. |
||
Termonerpeton[56] |
Gen. et sp. nov |
Valid |
Bathgate Hills Volcanic Formation |
A tetrapod of uncertain affinities, probably a stem-amniote. The type species is T. makrydactylus. |
||||
Research
- A study on the anatomy of the Carboniferous temnospondyl specimen from the Joggins Fossil Cliffs (Nova Scotia, Canada) referred to Dendrysekos helogenes is published by Arbez, Atkins & Maddin (2022), who consider the genus Dendrysekos to be likely junior synonym of Dendrerpeton.[57]
- Fossil material of large-bodied capitosaurs and a plagiosaurid is described from the Middle Triassic Fremouw Formation (Antarctica) by Gee & Sidor (2022), who also interpret the historic material from the Fremouw Formation attributed to Trematosauria as exhibiting features indicative of capitosaurian affinities.[58]
- Redescription of Parioxys ferricolus is published by Schoch & Sues (2022).[59]
- An incomplete salamander dentary, possibly representing a previously unknown genus and species of batrachosauroidid, is described from the Maastrichtian Lance Formation (Wyoming, United States) by Gardner (2022).[60]
- Fossil material of a toad belonging or related to the genus Rhinella is described from the Serravallian Cura-Mallín Formation (Chile) by Guevara et al. (2022), representing the southernmost fossil record of Bufonidae in South America for the Miocene reported to date.[61]
- A study on the seymouriamorph tracks from the Permian (Asselian) of the Boskovice Basin (Czech Republic), representing one of the oldest known records of seymouriamorphs worldwide, is published by Calábková, Březina & Madzia (2022), who interpret these tracks as evidence of presence of terrestrial seymouriamorphs which were much larger than the largest discosauriscid specimens known from this area, and likely evidence of a habitat shift that occurred relatively late in the ontogenetic development of discosauriscids.[62]
Reptiles
Synapsids
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Cifellilestes[63] | Gen. et sp. nov | Davis et al. | Late Jurassic (Tithonian) | Morrison Formation | ![]() |
A morganucodontan. The type species is C. ciscoensis. | ||
Gen. et sp. nov |
Gaetano et al. |
A cynodont belonging to the group Probainognathia. The type species is T. bonapartei. |
![]() | |||||
Research
- A study on the anatomy of the skull of Cotylorhynchus romeri is published by Reisz, Scott & Modesto (2022).[65]
- Fossil material of Dicynodon angielczyki is described from the Metangula Graben (Mozambique) and Luangwa Basin (Zambia) by Kammerer et al. (2022), representing the first specimens referable to this species found outside the Ruhuhu Basin (Tanzania).[66]
- Sidor (2022) describes articulated pedes of a small gorgonopsian from the upper Permian upper Madumabisa Mudstone Formation (Zambia).[67]
- A gorgonopsian specimen is described from the Wutonggou Formation (Turpan Basin, Xinjiang, China) by Liu & Yang (2022), who interpret this specimen as indicating that gorgonopsians survived in northern warm temperate zone about ∼253.3 million years ago, contemporaneous with the latest records from Russia and South Africa.[68]
- A study on the pattern of tooth replacement in Cynosaurus suppostus, based on data from five specimens inferred to represent an ontogenetic growth series, is published by Norton et al. (2022).[69]
- A study aiming to determine the body mass of Andescynodon mendozensis, Pascualgnathus polanskii, Massetognathus pascuali, Cynognathus crateronotus and Exaeretodon argentinus on the basis of linear measurements and circumferences of postcranial elements of specimens from Triassic units of the Ischigualasto-Villa Union Basin (Argentina) is published by Filippini, Abdala & Cassini (2022).[70]
- New fossil material of Santacruzodon hopsoni and Chiniquodon sp., providing new information on the anatomy of the former taxon, is described from the Upper Triassic Santacruzodon Assemblage Zone (Santa Cruz Sequence, Santa Maria Supersequence, Brazil) by Melo, Martinelli & Soares (2022).[71]
- Description of the anatomy of the mandible and teeth of Hadrocodium wui, including new information unavailable from previous fossil preparation, is published by Luo et al. (2022).[72]
Mammals
Other animals
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Acanthochaetetes fischeri[73] |
Sp. nov |
In press |
Schlagintweit et al. |
Khurmala Formation |
A demosponge belonging to the family Acanthochaetetidae. |
|||
Anjigraptus[74] |
Gen. et sp. nov |
Valid |
Muir et al. |
Ordovician (Hirnantian) |
A graptolite. The type species is A. wangi. |
|||
Anjiplectella[75] |
Gen. et sp. nov |
Botting et al. |
Ordovician (Hirnantian) |
A sponge belonging to the family Euplectellidae. The type species is A. davidipharus. |
||||
Hadimopanella luchininae[76] |
Sp. nov |
Valid |
Novozhilova |
Early Cambrian |
||||
Lindstroemiella[77] |
Gen. et sp. nov |
Valid |
Zatoń et al. |
Silurian (Ludfordian) |
A member of Tentaculita. Genus includes new species L. eichwaldi. |
|||
Gen. et sp. nov |
In press |
Mann, Pardo & Maddin |
Carboniferous |
A tetrapod of uncertain phylogenetic placement, a member of the family Molgophidae. The type species is N. mazonense. |
||||
Nectocollare[79] |
Gen. et sp. nov |
In press |
Botting & Ma |
Ordovician |
A sponge, possibly a member of the family Hyalonematidae. Genus includes new species N. zakdouli. |
|||
Neodexiospira ferlinghettii[80] |
Sp. nov |
In press |
Kočí, Goedert & Buckeridge |
Early Eocene |
A polychaete. |
|||
Neodexiospira vanslykei[80] |
Sp. nov |
In press |
Kočí, Goedert & Buckeridge |
Late Eocene |
A polychaete. |
|||
Turgidaspongia[81] |
Gen. et sp. nov |
In press |
Li et al. |
Ordovician-Silurian boundary |
A hexactinellid sponge belonging to the family Stiodermatidae. The type species is T. porosa. |
|||
Gen. et sp. nov |
Valid |
Pates et al. |
Cambrian (Drumian) |
An opabiniid. The type species is U. comosa. |
![]() | |||
Research
- A study on the fossil record of Petalonamae, their survival of the Ediacaran–Cambrian transition and the timing and causes of their extinction is published by Hoyal Cuthill (2022).[83]
- Aragonés Suarez & Leys (2022) propose a method for identifying fossil organisms as sponge grade animals, and apply their method to a putative Ediacaran sponge Thectardis avalonensis.[84]
Other organisms
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Nõlvak, Liang & Hints |
Ordovician (Darriwilian) |
Šakyna Formation |
A chitinozoan. |
|||
Sp. nov |
Valid |
Nõlvak, Liang & Hints |
Ordovician (Darriwilian) |
Šakyna Formation |
A chitinozoan. |
|||
Eremochitina? procera[85] |
Sp. nov |
Valid |
Nõlvak, Liang & Hints |
Ordovician (Darriwilian) |
Šakyna Formation |
A chitinozoan. |
||
Longbizuiella[86] |
Gen. et sp. nov |
In press |
Yi et al. |
Liuchapo Formation |
An organism preserved as a series of uniserially-arranged, uniform-sized, spherical segments, described on the basis of fossils formerly assigned to the genus Horodyskia. The type species is L. hunanensis. |
|||
Sp. nov |
In press |
Yi et al. |
Ediacaran |
Liuchapo Formation |
An organism preserved as uniserially arranged segments, interpret by Yi et al. (2022) as a body fossil rather than a trace fossil. |
|||
Nenoxites jishouensis[86] |
Sp. nov |
In press |
Yi et al. |
Ediacaran |
Liuchapo Formation |
An organism preserved as serially-arranged, uniform-sized, crescent segments, interpret by Yi et al. (2022) as a body fossil rather than a trace fossil. |
||
Poratusiramus[86] |
Gen. et sp. nov |
In press |
Yi et al. |
Ediacaran |
Liuchapo Formation |
An organism preserved as a long horizontal stem with side branches growing upward, with similarities to possible Cambrian dasycladalean algae such as Seletonella. The type species is P. xiangxiensis. |
||
Sp. nov |
Valid |
Nõlvak, Liang & Hints |
Ordovician (Darriwilian) |
Baldone Formation |
A chitinozoan. |
|||
Research
- Zhang & Zhang (2022) describe new embryo-like Megasphaera fossils from the Ediacaran Zhenba microfossil assemblage, and interpret the studied specimens as inconsistent with the metazoan interpretation of the Ediacaran Megasphaera fossils, and supporting their encysting-protist affinity.[87]
- A study on the impact of the Paleocene–Eocene Thermal Maximum on tropical planktic foraminifera in the central Pacific Ocean is published by Hupp, Kelly & Williams (2022).[88]
- Revision of the taxonomy, regional distribution, ecological preferences and stratigraphic significance of the middle Miocene foraminifera from the northern Namibian continental shelf is published by Bergh & Compton (2022).[89]
- A study on the taphonomy and morphology of the type material of Charniodiscus concentricus is published by Pérez-Pinedo et al. (2022), who emend the generic diagnosis of Charniodiscus.[90]
History of life in general
- A study on the age of the Lantian biota is published by Yang et al. (2022).[91]
- A study on animal cognitive complexity in Cambrian and post-Cambrian marine ecosystems is published by Hsieh, Plotnick & Bush (2022).[92]
- An association of palaeoscolecids, brachiopods and parasitic tube worms, interpreted as record of a brachiopod-dominated, vertically stratified benthic community where the different phyla filled multiple ecological niches, is reported from the Cambrian Stage 4 Wulongqing Formation (China) by Chen et al. (2022).[93]
- A study on the ecological processes that structured the composition of trilobite and echinoderm communities from the Central Anti-Atlas (Morocco), Montagne Noire (France) and Cordillera Oriental (Argentina) during the Early Ordovician is published by Saleh et al. (2022).[94]
- A study on rates of evolution and evolutionary constraints during the earliest (Carboniferous–early Permian) radiation of amniotes across their anatomy, examining differences between early synapsids and early reptiles, is published by Brocklehurst, Ford & Benson (2022).[95]
- Review of the stratigraphic and paleontological data on the Permian equatorial ecosystem from Mallorca (Spain) is published by Matamales-Andreu et al. (2022).[96]
- A study on changes in species composition of the brachiopod fossil record from the Permian Kapp Starostin Formation (Spitsbergen, Norway), and on their implications for the knowledge of the global significance of the Capitanian mass extinction event, is published by Lee et al. (2022).[97]
- Review of the patterns of the Permian–Triassic extinction event in the ocean and on land, discussing the hypotheses surrounding the kill mechanisms of this extinction, is published by Dal Corso et al. (2022).[98]
- A study on the ecological selectivity of marine extinctions across the end-Permian mass extinction in the South China region is published by Foster et al. (2022).[99]
- Diverse assemblage of tetrapods, including a lonchorhynchine trematosaurid, at least two taxa of capitosauroid temnospondyls, a kannemeyeriiform dicynodont, procolophonid parareptiles and several taxa of archosauromorph reptiles (including the first definite record of Tanystropheus from eastern North America), is described from the Middle Triassic Economy Member of the Wolfville Formation (Nova Scotia, Canada) by Sues et al. (2022).[100]
- A study on the diversity of the vertebrates in the Yanliao Biota, comparing this biota with other biotas of similar age, is published by Liu, Wu & Han (2022).[101]
- Revision of the Early Cretaceous vertebrate fauna from the Khok Pha Suam locality (Khok Kruat Formation, Thailand) is published by Manitkoon et al. (2022).[102]
- A diverse vertebrate fauna, sharing similarities with lowland to marginal marine ecosystems in the Oldman and Dinosaur Park formations (which were deposited in southern Alberta prior to the gap in the terrestrial fossil record caused by a transgression of the inland Bearpaw Seaway during the latter part of the Campanian), is described from the Unit 3 of the strictly terrestrial Wapiti Formation (Alberta, Canada) by Fanti et al. (2022). [103]
- McCurry et al. (2022) report the discovery of a new Miocene Lagerstätte named McGraths Flat (New South Wales, Australia), preserving a rich diversity of microfossils, plants, insects, spiders, and vertebrate remains, and preserving evidence of several species interactions, including predation, parasitism and pollination.[104]
- A study on the relationship between landscape and climatic changes and the evolution of the late Miocene faunas of terrestrial vertebrates and marine mammals of southeastern Europe is published by Zelenkov et al. (2022).[105]
- A study on the impact of the extinct Neotropical megafauna on the variability in plant functional traits and biome geography in Central and South America is published by Dantas & Pausas (2022).[106]
- A study on the relative abundances of fossil squamates and anurans from McEachern’s Deathtrap Cave (Australia), aiming to determine whether compositional changes of this fauna during the last ∼14,000 years were related to late Pleistocene–Holocene climatic fluctuations, is published by Ramm et al. (2022).[107]
- A study aiming to reconstruct Holocene feeding guilds in extinct megaherbivores of Madagascar on the basis of carbon and nitrogen isotope data is published by Hansford & Turvey (2022).[108]
- A study on the daily dentine apposition rates in extant and fossil amniotes, aiming to test the hypothesized daily limits of odontoblast activity, examine phylogenetic and allometric patterns of dentine growth evolution and reconstruct ancestral states of daily dentine apposition for major amniote clades, is published by Finch & D'Emic (2022).[109]
Other research
- A study on the diagnostic characteristics of the Chengjiang Biota deposit and on its sedimentary environment is published by Saleh et al. (2022).[110]
- Zhao et al. (2022) use a continuous astronomical signal detected as geochemical variations in the late Cambrian Alum Shale Formation (Sweden) to establish a 16-million-years-long astronomical time scale, providing detailed temporal constraints on the paleoenvironmental and biological changes during the late Cambrian.[111]
- A study on the lithology and stratigraphy of the Famennian-aged Lebedjan Formation (Lipetsk Oblast, Russia), on the composition of the Lebedjan biota and on its paleoenvironment, is published by Bicknell & Naugolnykh (2022).[112]
- A study on the development of the mid-late Cisuralian environments and ecosystems in central Pangaea, based on data from the late Cisuralian fossil assemblage of the Southern Alps and its comparison with other Cisuralian assemblages, is published by Marchetti et al. (2022).[113]
- The first shallow-marine methane seeps reported from the Australian Upper Paleozoic, as well as a new seep biota, are described from the Sakmarian lower Holmwood Shale in the Irwin Basin by Haig et al. (2022).[114]
- A study on the timeline and character of environmental changes in the Bowen Basin (Queensland, Australia) leading up to the Permian–Triassic extinction event is published by Fielding et al. (2022).[115]
- A study investigating fossilised shells of gastropods and bivalves from the Permian–Triassic succession exposed at Lusitaniadalen (Svalbard, Norway) for dissolution and repair marks, and aiming to determine whether a worldwide ocean acidification event occurred during the Permian–Triassic transition, is published by Foster et al. (2022).[116]
- Evidence from the Bristol Channel Basin (United Kingdom), indicating that intensive euxinia and acidification driven by Central Atlantic magmatic province activity formed a two-pronged kill mechanism at the end-Triassic mass extinction, is presented by Fox et al. (2022).[117]
- Onoue et al. (2022) present a continental weathering record in the northwestern Tethys during the end-Triassic mass extinction event, inferred from strontium, carbon and oxygen isotope data from carbonate–clastic deposits in the Kardolína section (Slovakia), and interpret their findings as indicating that the marine environment in the Late Triassic European basins may have developed an oxygen minimum zone due to the increase in continental weathering during the latest Rhaetian, which might have had an important role in the marine end-Triassic extinction.[118]
- A study on the age of the Early Cretaceous fossil assemblage from the Moqi fossil bed (China) is published by Yu et al. (2022).[119]
- Beveridge et al. (2022) present new radioisotopic ages for the Campanian Wahweap Formation (Utah, United States), a lithostratigraphic revision and a review of the spatio-temporal distribution of vertebrate fossils from this formation, including revised ages for early tyrannosaurid, hadrosaurid and centrosaurine dinosaurs.[120]
- A study on the bone apposition in three paddlefish dentaries and three sturgeon pectoral fin spines from the Tanis site (North Dakota, United States), aiming to pinpoint the season in which bone apposition terminated, is published by During et al. (2022), who interpret their findings as indicating that the impact that caused the Cretaceous–Paleogene extinction event took place during boreal spring.[121]
- Review of the environmental consequences of the Chicxulub impact at the Cretaceous–Paleogene boundary is published by Morgan et al. (2022).[122]
- A study on the early Oligocene-middle Miocene wildfire history of the northern Tibetan Plateau and on the relationship between wildfire frequencies and temperature changes, based on data from sedimentary records of the microcharcoals from the Qaidam Basin, is published by Miao et al. (2022).[123]
- New information of the age, stratigraphy, biota and palaeoenvironment of the Miocene Els Casots site (Vallès-Penedès Basin; Catalonia, Spain) is presented by Casanovas-Vilar et al. (2022).[124]
- A study aiming to reconstruct the middle Miocene habitats on the northern North American Great Plains, as indicated by stable carbon isotope data from a wide variety of fossil ungulates from four local faunas in Nebraska of late Barstovian age, is published by Nguy & Secord (2022). [125]
- A study on the environmental variability in Africa during the Pliocene and Pleistocene, and on the impact of this environmental variability on the evolution of African mammals, is published by Cohen et al. (2022).[126]
- A study on the habitat types at the Woranso-Mille site (Ethiopia) during the Pliocene, and on factors which allowed the coexistence of more than one species of Australopithecus at the site, is published by Denise Su & Yohannes Haile-Selassie (2022).[127]
- A study on the environmental context of hominin evolution in the Plio-Pleistocene of Africa, as indicated by oxygen and carbon enamel isotope data from carnivorans from the Omo Group of the Turkana Basin (Kenya), is published by Hopley et al. (2022).[128]
- A study on the age of the Xiashagou Fauna from the Nihewan Basin in northern China is published by Tu et al. (2022), who interpret the age of this fauna as consistent with the ages of the Senèze and Olivola Faunas in Europe, and possibly indicative of the existence of an ecological corridor for faunal dispersals across northern Eurasia during the early Pleistocene.[129]
- Woolly mammoth, steppe bison, caballine horse and willow ptarmigan mitochondrial genomes are reconstructed from samples of permafrost silts from central Yukon (Canada) spanning the last 30,000 years by Murchie et al. (2022).[130]
- A study on the timing of the opening of the ice-free corridor along the eastern front of the Rocky Mountains in the late Pleistocene, aiming to determine whether this corridor was available for the first peopling of the Americas after the Last Glacial Maximum, is published by Clark et al. (2022).[131]
- Wiemann & Briggs (2022) demonstrated the presence of different biological signals in Raman and Fourier-Transform Infrared spectroscopy data of a diversity of carbonaceous animal fossils through independent laboratory confirmation (2022).[132]
- A study on the impact of food hardness and size on the morphology of the mandible of extant pigs, and on its implications for the use of mandibular morphology as a proxy in paleodietary reconstructions, is published by Neaux et al. (2022).[133]
- Amano et al. (2022) present a method to mathematically isolate and selectively eliminate the taphonomic deformation of a fossil skull for restoration of its original appearance, and apply this method to reconstruction of a skull of Mesopithecus from the late Miocene of Greece.[134]
- Demuth et al. (2022) present a new method for volumetric three-dimensional reconstructions of musculature in extant and extinct taxa, and apply this method to reconstruction of the hindlimb musculature of Euparkeria capensis.[135]
- Lallensack & Falkingham (2022) present a new method that allows for estimating limb phase based on variation patterns in long trackways, and use this method to estimate limb phases of giant wide-gauged sauropod dinosaurs that produced three long trackways from the Albian De Queen Formation (Arkansas, United States).[136]
- Survey of examples of scientific practices stemming from colonialism, focusing on the studies of fossils from Brazil (Araripe Basin) and Mexico (Sabinas, La Popa and Parras basins) published during 1990–2021, is published by Cisneros et al. (2022), who propose recommendations to scientists, journals, museums, research institutions and government and funding agencies in order to overcome these practices.[137]
Paleoclimate
- Joachimski et al. (2022) reconstruct late Permian to Middle Triassic atmospheric CO2 record, and interpret their findings as indicative of an approximate fold increase in pCO2 from the latest Permian to Early Triassic.[138]
- A study on the climate response to orbital variations in a Late Triassic midlatitude temperate setting in Jameson Land (Greenland) and the tropical low paleolatitude setting of the Newark Basin is published by Mau, Kent & Clemmensen (2022).[139]
- A study on the latitudinal temperature gradient over the last 95 million years, as indicated by data from planktonic foraminifera δ18O, is published by Gaskell et al. (2022).[140]
- A study on the sulfur isotope anomalies in the Cretaceous-Paleogene boundary impact debris and overlying sediments is published by Junium et al. (2022), who interpret their findings as evidence of injection of massive amounts of sulfur into the stratosphere in the aftermath of the Chicxulub impact, and evidence of the role of the sulfur-bearing gases in driving a postimpact winter.[141]
- Agterhuis et al. (2022) report deep-sea temperature estimates across the Eocene Thermal Maximum 2 and the hyperthermal event that occurred approximately 2 million years after the Paleocene–Eocene Thermal Maximum (approximately 54 million years ago).[142]
- A study on the climatic impact of oceanic gateway changes at the Eocene–Oligocene Transition is published by Straume et al. (2022).[143]
- A study on the impact of climate variability on the evolution of early African Homo, Eurasian Homo erectus, Homo heidelbergensis, Neanderthals and modern humans is published by Timmermann et al. (2022).[144]
- Evidence of five phases of lake development at Tayma (Saudi Arabia) is presented by Neugebauer et al. (2022), who interpret their findings as indicative of unexpectedly short duration (dating from 8800 to 7900 years before present) of the Holocene Humid Period in Northern Arabia.[145]
References
- Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
- Lee, D.-J.; Elias, R. J.; Pratt, B. R. (2022). "Reptamsassia n. gen. (Amsassiaceae n. fam.; calcareous algae) from the Lower Ordovician (Floian) of western Newfoundland, and the earliest symbiotic intergrowth of modular species". Journal of Paleontology. in press: 1–14. doi:10.1017/jpa.2021.122. S2CID 246399388.
- Sforna, M. C.; Loron, C. C.; Demoulin, C. F.; François, C.; Cornet, Y.; Lara, Y. J.; Grolimund, D.; Sanchez, D. F.; Medjoubi, K.; Somogyi, A.; Addad, A.; Fadel, A.; Compère, P.; Baudet, D.; Brocks, J. J.; Javaux, E. J. (2022). "Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae". Nature Communications. 13 (1): Article number 146. Bibcode:2022NatCo..13..146S. doi:10.1038/s41467-021-27810-7. PMC 8748435. PMID 35013306.
- Maloney, K. M.; Schiffbauer, J. D.; Halverson, G. P.; Xiao, S.; Laflamme, M. (2022). "Preservation of early Tonian macroalgal fossils from the Dolores Creek Formation, Yukon". Scientific Reports. 12 (1): Article number 6222. doi:10.1038/s41598-022-10223-x. PMC 9007953. PMID 35418588.
- Retallack, G. J. (2022). "Ordovician-Devonian lichen canopies before evolution of woody trees". Gondwana Research. 106: 211–223. Bibcode:2022GondR.106..211R. doi:10.1016/j.gr.2022.01.010. S2CID 246320087.
- Rodríguez, S.; Said, I.; Somerville, I. D.; Cózar, P.; Coronado, I. (2022). "Coral assemblages of the Serpukhovian–Bashkirian transition from Adarouch (Morocco)". PalZ. in press. doi:10.1007/s12542-021-00586-3. S2CID 246873023.
- Van Iten, H.; Gutiérrez-Marco, J. C.; Cournoyer, M. E. (2022). "Unusual assemblage of conulariids (Cnidaria, Scyphozoa) from the Taddrist Formation (Middle Ordovician, Darriwilian) of southern Morocco". Journal of Paleontology. Online edition: 1–11. doi:10.1017/jpa.2022.6. S2CID 247611923.
- Sarsembaev, Z. A.; Marusin, V. V. (2022). "Nonmineralized triradial conulariids from the lowermost Cambrian Stage 2 of the Olenek Uplift, Siberian Platform". Journal of Paleontology. Online edition: 1–12. doi:10.1017/jpa.2022.21.
- Denayer, J; Poty, E.; Tourneur, F.; Aretz, M. (2022). "Colonial Heterocorallia (Cnidaria, Anthozoa) and their epibionts from the lower Carboniferous of Montagne Noire and Pyrenees, southern France". PalZ. in press. doi:10.1007/s12542-021-00588-1. S2CID 245654060.
- Song, Z.; Guo, J.; Han, J.; Van Iten, H.; Qiang, Y.; Peng, J.; Sun, J.; Zhang, Z. (2022). "A New Species of Septuconularia (Hexangulaconulariidae, Cnidaria) from Cambrian Stage 2, South China". Acta Geologica Sinica (English Edition). in press. doi:10.1111/1755-6724.14917. S2CID 247428409.
- Garberoglio, R. M.; Löser, H.; Lazo, D. G. (2022). "Lower Cretaceous corals from the Agrio Formation, Neuquén Basin, west-central Argentina: Families Latomeandridae, Madreporidae, Thamnasteriidae, and Holocoenia Group". Cretaceous Research. 135: Article 105195. doi:10.1016/j.cretres.2022.105195. S2CID 247416059.
- Ohar, V. (2022). "Tournaisian and early Viséan tabulate corals from the Donets Basin, Ukraine and some aspects of their taxonomy". PalZ. in press. doi:10.1007/s12542-021-00587-2. S2CID 246815834.
- Miller, A. P.; Jacquet, S. M.; Anderson, E. P.; Schiffbauer, J. D. (2022). "Conulariids from the Silurian (late Telychian) Waukesha Lagerstätte, Wisconsin". Historical Biology: An International Journal of Paleobiology. in press: 1–21. doi:10.1080/08912963.2021.2017917. S2CID 246317873.
- Wang, X.; Vannier, J.; Yang, X.; Leclère, L.; Ou, Q.; Song, X.; Komiya, T.; Han, J. (2022). "Muscle systems and motility of early animals highlighted by cnidarians from the basal Cambrian". eLife. 11: e74716. doi:10.7554/eLife.74716. PMC 8837203. PMID 35098925. S2CID 246428624.
- Bridge, T. C. L.; Baird, A. H.; Pandolfi, J. M.; McWilliam, M. J.; Zapalski, M. K. (2022). "Functional consequences of Palaeozoic reef collapse". Scientific Reports. 12 (1): Article number 1386. Bibcode:2022NatSR..12.1386B. doi:10.1038/s41598-022-05154-6. PMC 8792005. PMID 35082318.
- Pérez, L. M.; López-Gappa, J. (2022). "Bryozoans associated with gastropod shells in the early Miocene of Patagonia (Argentina)". Ameghiniana. 59 (2): 162–170. doi:10.5710/AMGH.27.01.2022.3485. S2CID 247000257.
- Ernst, A. (2022). "Bryozoan fauna from the Kunda Stage (Darriwilian, Middle Ordovician) of Estonia and NW Russia". Bulletin of Geosciences. 97 (1): 33–68. doi:10.3140/bull.geosci.1843. S2CID 246304904.
- Sonar, M. A.; Pawar, R. V.; Wayal, D. V. (2022). "Fossil Thalamoporellidae (Bryozoa) from Paleogene–Neogene sediments of western Kachchh, Gujarat, India". Zootaxa. 5104 (2): 251–274. doi:10.11646/zootaxa.5104.2.5. PMID 35391038. S2CID 247116985.
- Pruss, S. B.; Leeser, L.; Smith, E. F.; Zhuravlev, A. Yu.; Taylor, P. D. (2022). "The oldest mineralized bryozoan? A possible palaeostomate in the lower Cambrian of Nevada, USA". Science Advances. 8 (16): eabm8465. doi:10.1126/sciadv.abm8465. PMID 35442738.
- Ma, J.Y.; Taylor, P. D.; Buttler, C. J.; Xia, F.S. (2022). "Bryozoans from the Early Ordovician Fenhsiang Formation (Tremadocian) of South China and the early diversification of the phylum". The Science of Nature. 109 (2): Article number 21. Bibcode:2022SciNa.109...21M. doi:10.1007/s00114-022-01791-z. PMID 35333983. S2CID 247712842.
- Moharrek, F.; Taylor, P. D.; Silvestro, D.; Jenkins, H. L.; Gordon, D. P.; Waeschenbach, A. (2022). "Diversification dynamics of cheilostome bryozoans based on a Bayesian analysis of the fossil record". Palaeontology. 65 (1): e12586. doi:10.1111/pala.12586. S2CID 245791052.
- Orr, R. J. S.; Di Martino, E.; Ramsfjell, M. H.; Gordon, D. P.; Berning, B.; Chowdhury, I.; Craig, S.; Cumming, R. L.; Figuerola, B.; Florence, W.; Harmelin, J.-G.; Hirose, M.; Huang, D.; Jain, S. S.; Jenkins, H. L.; Kotenko, O. N.; Kuklinski, P.; Lee, H. E.; Madurell, T.; McCann, L.; Mello, H. L.; Obst, M.; Ostrovsky, A. N.; Paulay, G.; Porter, J. S.; Shunatova, N. N.; Smith, A. M.; Souto-Derungs, J.; Vieira, L. M.; Voje, K. L.; Waeschenbach, A.; Zágoršek, K.; Warnock, R. C. M.; Liow, L. H. (2022). "Paleozoic origins of cheilostome bryozoans and their parental care inferred by a new genome-skimmed phylogeny". Science Advances. 8 (13): eabm7452. doi:10.1126/sciadv.abm7452. PMC 8967238. PMID 35353568.
- Popov, L. E.; Cocks, L. R. M. (2022). "A mid-Ordovician brachiopod evolutionary hotspot in southern Kazakhstan". Fossils and Strata. 66: 1–160. ISBN 978-1-119-78236-0.
- Serobyan, V.; Danelian, T.; Crônier, C.; Grigoryan, A.; Mottequin, B. (2022). "Aramazdospirifer orbelianus (Abich, 1858) n. comb., a new cyrtospiriferid brachiopod genus and a biostratigraphically important species from the lower Famennian (Upper Devonian) of Armenia". Comptes Rendus Palevol. 21 (6): 145–156. doi:10.5852/cr-palevol2022v21a6. S2CID 246885014.
- Vörös, A. (2022). "Monospecific mass occurrence of a new species of the Early Jurassic genus Arzonellina (Brachiopoda) at Fenyveskút (Bakony Mountains, Hungary)". Földtani Közlöny. 152 (1): 17–30. doi:10.23928/foldt.kozl.2022.152.1.17 (inactive 2022-04-13).
{{cite journal}}
: CS1 maint: DOI inactive as of April 2022 (link) - Baarli, B. G. (2022). "The new brachiopod genus Eiratrypa and the genus Clintonella from the Lower Silurian (Llandovery) of Baltica". Norwegian Journal of Geology. doi:10.17850/njg102-1-3.
- Serobyan, V.; Danelian, T.; Crônier, C.; Grigoryan, A.; Mottequin, B. (2022). "New and revised cyrtospiriferid (Spiriferida) brachiopods from the lower Famennian (Upper Devonian) of Armenia". Journal of Paleontology. Online edition: 1–20. doi:10.1017/jpa.2022.9. S2CID 247888809.
- Halamski, A. T.; Baliński, A.; Koppka, J. (2022). "Middle Devonian brachiopods from northern Maïder (eastern Anti-Atlas, Morocco)". Annales Societatis Geologorum Poloniae. 92 (1): 1–86. doi:10.14241/asgp.2022.03. S2CID 247555203.
- Oh, Y.; Lee, D.-C.; Lee, S.; Lee, S.-B.; Hong, P. S.; Hong, J. (2022). "Palaeobiogeography of the family Nisusiidae (Cambrian rhynchonelliform brachiopods) using the 'area-transition count' method and systematic revision of Korean species". Papers in Palaeontology. 8 (1): e1420. doi:10.1002/spp2.1420. S2CID 246306508.
- Zamora, S. (2022). "Systematics, Taphonomy, and Paleoecology of Millericrinids (Millericrinida, Articulata, Crinoidea) from the Late Jurassic of Spain". Contributions from the Museum of Paleontology, University of Michigan. 34 (7): 82–102. doi:10.7302/4251.
- Lefebvre, B.; Nohejlová, M.; Martin, E. L. O.; Kašička, L.; Zicha, O.; Gutiérrez-Marco, J. C. (2022). "New Middle and Late Ordovician cornute stylophorans (Echinodermata) from Morocco and other peri-Gondwanan areas". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. The Geological Society of London. doi:10.1144/SP485-2021-99. S2CID 246330814.
- Ausich, W. I.; Salamon, M. A.; Płachno, B. J.; Brachaniec, T.; Krawczyński, W.; Boczarowski, A.; Paszcza, K.; Łukowiak, M.; Gorzelak, P. (2022). "Unraveling the hidden paleobiodiversity of the Middle Devonian (Emsian) crinoids (Crinoidea, Echinodermata) from Poland". PeerJ. 10: e12842. doi:10.7717/peerj.12842. PMC 8840065. PMID 35186460.
- Lefebvre, B.; Nohejlova, M.; Kašička, L.; Zicha, O. (2022). "New Peri-Gondwanan occurrences of the Ordovician genus Diamphidiocystis (Echinodermata, Stylophora) - Implications for mitrocystitid palaeobiogeography and diversity". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. The Geological Society of London. doi:10.1144/SP485-2021-100. S2CID 246026621.
- Webster, G. D.; Heward, A. P.; Ausich, W. I. (2022). "First crinoid crown from the Permian Khuff Formation (Wordian) of Oman". Proceedings of the Geologists' Association. in press. doi:10.1016/j.pgeola.2022.02.005. S2CID 247539305.
- Gale, A. (2022). ""Slime stars" (Echinodermata, Asteroidea, Velatida) from the Upper Cretaceous of northern Europe". Cretaceous Research. in press: Article 105223. doi:10.1016/j.cretres.2022.105223. S2CID 248092753.
- Thuy, B.; Eriksson, M. E.; Kutscher, M.; Lindgren, J.; Numberger-Thuy, L. D.; Wright, D. F. (2022). "Miniaturization during a Silurian environmental crisis generated the modern brittle star body plan". Communications Biology. 5 (1): Article number 14. doi:10.1038/s42003-021-02971-9. PMC 8748437. PMID 35013524.
- Thompson, J. R.; Cotton, L. J.; Candela, Y.; Kutscher, M.; Reich, M.; Bottjer, D. J. (2022). "The Ordovician diversification of sea urchins: systematics of the Bothriocidaroida (Echinodermata: Echinoidea)". Journal of Systematic Palaeontology. doi:10.1080/14772019.2022.2042408.
- Park, H.; Lee, S.-B.; Woo, J.; Lee, D.-C. (2022). "The first Middle Ordovician and Gondwanan record of the cincinnaticrinid crinoid Ohiocrinus byeongseoni n. sp. from South Korea: biostratigraphy, paleobiogeography, and taphonomy". Journal of Paleontology. Online edition: 1–11. doi:10.1017/jpa.2022.8. S2CID 247492659.
- Thuy, B.; Nungesser, K.; Numberger-Thuy, L. D. (2022). "New Brittle Stars (Echinodermata, Ophiuroidea) from the Oligocene of the Mainz Basin, Germany". Taxonomy. 2 (2): 196–207. doi:10.3390/taxonomy2020015.
- Ishida, Y.; Thuy, B.; Nam, G.-S.; Martynov, A.; Fujita, T.; Kim, J.-H. (2022). "A New Species of Ophiura (Echinodermata, Ophiuroidea) from Miocene Deep-Sea Deposits in the Pohang Basin, Korea". Paleontological Research. 26 (1): 18–30. doi:10.2517/PR200002. S2CID 245478821.
- Stecher, R. (2022). "First record of the echinoid genus Orthopsis Cotteau, 1864 from the Kössen Formation (Rhaetian, uppermost Triassic) of Vorarlberg (Austria), with description of a new species" (PDF). Annalen des Naturhistorischen Museums in Wien, Serie A. 122: 165–185. JSTOR 27101237.
- Guensburg, T. E.; Sprinkle, J. (2022). "Morphologic Expressions and Paleogeographic Implications of Earliest Known (Floian, Early Ordovician) Hybocrinids". Contributions from the Museum of Paleontology, University of Michigan. 34 (3): 17–33. doi:10.7302/3813.
- Zamora, S.; Rahman, I. A.; Sumrall, C. D.; Gibson, A. P.; Thompson, J. R. (2022). "Cambrian edrioasteroid reveals new mechanism for secondary reduction of the skeleton in echinoderms". Proceedings of the Royal Society B: Biological Sciences. 289 (1970): Article ID 20212733. doi:10.1098/rspb.2021.2733. PMC 8889179. PMID 35232240. S2CID 247170097.
- Novack-Gottshall, P. M.; Sultan, A.; Smith, N. S.; Purcell, J.; Hanson, K. E.; Lively, R.; Ranjha, I.; Collins, C.; Parker, R.; Sumrall, C. D.; Deline, B. (2022). "Morphological volatility precedes ecological innovation in early echinoderms". Nature Ecology & Evolution. 6 (3): 263–272. doi:10.1038/s41559-021-01656-0. PMID 35145267. S2CID 246750373.
- Ausich, W. I. (2022). "The Calceocrinid Puzzle". Contributions from the Museum of Paleontology, University of Michigan. 34 (8): 103–122. doi:10.7302/4252.
- Mongiardino Koch, N.; Thompson, J. R.; Hiley, A. S.; McCowin, M. F.; Armstrong, A. F.; Coppard, S. E.; Aguilera, F.; Bronstein, O.; Kroh, A.; Mooi, R.; Rouse, G. W. (2022). "Phylogenomic analyses of echinoid diversification prompt a re-evaluation of their fossil record". eLife. 11: e72460. doi:10.7554/eLife.72460. PMC 8940180. PMID 35315317.
- Izokh, N. G. (2022). "New Middle Devonian conodonts from the north east Salair (south of the West Siberia)". Paleontological Journal. 56 (1): 85–90. doi:10.1134/S0031030122010075.
- Zhen, Y. Y.; Allen, H. J.; Martin, S. K. (2022). "Early Ordovician conodonts from Barnicarndy 1 stratigraphic well of the Southern Canning Basin, Western Australia". Alcheringa: An Australasian Journal of Palaeontology. in press: 1–16. doi:10.1080/03115518.2021.2017481. S2CID 246303337.
- Terrill, D. F.; Jarochowska, E.; Henderson, C. M.; Shirley, B.; Bremer, O. (2022). "Sr/Ca and Ba/Ca ratios support trophic partitioning within a Silurian conodont community from Gotland, Sweden". Paleobiology. in press: 1–21. doi:10.1017/pab.2022.9. S2CID 248062641.
- Ferretti, A.; Corriga, M. G.; Slavík, L.; Corradini, C. (2022). "Running across the Silurian/Devonian Boundary along Northern Gondwana: A Conodont Perspective". Geosciences. 12 (1): Article 43. Bibcode:2022Geosc..12...43F. doi:10.3390/geosciences12010043.
- Girard, C.; Charruault, A.-L.; Gluck, T.; Corradini, C.; Renaud, S. (2022). "Deciphering the morphological variation and its ontogenetic dynamics in the Late Devonian conodont Icriodus alternatus". Fossil Record. 25 (1): 25–41. doi:10.3897/fr.25.80211. S2CID 246587891.
- Zhuravlev, A. V.; Plotitsyn, A. N. (2022). "The middle–late Tournaisian crisis in conodont diversity: a comparison between Northeast Laurussia and Northeast Siberia". Palaeoworld. in press. doi:10.1016/j.palwor.2022.01.001. S2CID 246060690.
- von Bitter, P. H.; Norby, R. D.; Stamm, R. G. (2022). "The Carboniferous conodont Lochriea commutata (Branson and Mehl, 1941), the type species of Lochriea Scott, 1942: nomenclatural history, apparatus composition and effects on Lochriea species". Journal of Paleontology. 96 (Supplement S87): 1–38. doi:10.1017/jpa.2021.2. S2CID 246245148.
- Carrano, M. T.; Oreska, M. P. J.; Murch, A.; Trujillo, K. C.; Chamberlain, K. R. (2022). "Vertebrate paleontology of the Cloverly Formation (Lower Cretaceous), III: a new species of Albanerpeton, with biogeographic and paleoecological implications". Journal of Vertebrate Paleontology. in press: e2003372. doi:10.1080/02724634.2021.2003372. S2CID 247335328.
- Ponssa, M. L.; Babot, M. J.; Ortiz, P. E.; Candela, A. M.; Pereyra, M. O. (2022). "A new late Pliocene toad of the genus Rhinella (Bufonidae) from northwestern Argentina". Journal of South American Earth Sciences. 115: Article 103749. Bibcode:2022JSAES.11503749P. doi:10.1016/j.jsames.2022.103749. S2CID 247261185.
- Clack, J. A.; Smithson, T. R.; Ruta, M. (2022). "A Mississippian (early Carboniferous) tetrapod showing early diversification of the hindlimbs". Communications Biology. 5 (1): Article number 283. doi:10.1038/s42003-022-03199-x. PMC 9010477. PMID 35422092.
- Arbez, T.; Atkins, J. B.; Maddin, H. C. (2022). "Cranial anatomy and systematics of Dendrerpeton cf. helogenes (Tetrapoda, Temnospondyli) from the Pennsylvanian of Joggins, revisited through micro-CT scanning". Papers in Palaeontology. 8 (2): e1421. doi:10.1002/spp2.1421. S2CID 247420642.
- Gee, B. M.; Sidor, C. A. (2022). "Cold capitosaurs and polar plagiosaurs: new temnospondyl records from the upper Fremouw Formation (Middle Triassic) of Antarctica". Journal of Vertebrate Paleontology. 41 (4): e1998086. doi:10.1080/02724634.2021.1998086. S2CID 246832719.
- Schoch, R. R.; Sues, H.-D. (2022). "The dissorophoid temnospondyl Parioxys ferricolus from the early Permian (Cisuralian) of Texas". Journal of Paleontology. in press: 1–11. doi:10.1017/jpa.2022.10. S2CID 247920021.
- Gardner, J. D. (2022). "A unique dentary suggests a third genus of batrachosauroidid salamander existed during the latest Cretaceous in the western USA". Acta Palaeontologica Polonica. 67 (1): 35–50. doi:10.4202/app.00926.2021. S2CID 247872161.
- Guevara, J. P.; Suazo Lara, F.; Alarcón-Muñoz, J.; Buldrini, K.; Soto-Acuña, S.; Rubilar-Rogers, D. (2022). "The first fossil frog (Anura: Bufonidae) from the Cura-Mallín Formation (Río Pedregoso Member, middle Miocene) of Lonquimay, Araucania Region, Central Chile". Journal of South American Earth Sciences. 115: Article 103753. doi:10.1016/j.jsames.2022.103753. S2CID 247207628.
- Calábková, G.; Březina, J.; Madzia, D. (2022). "Evidence of large terrestrial seymouriamorphs in the lowermost Permian of the Czech Republic". Papers in Palaeontology. 8 (2): e1428. doi:10.1002/spp2.1428. S2CID 247822357.
- Davis, Brian; Jager, Kai; Rougier, Guillermo; Trujillo, Kelli; Chamberlain, Kevin (2022). "A morganucodontan (Mammaliaformes) from the Upper Jurassic Morrison Formation, Utah, USA". Acta Palaeontologica Polonica. 67. doi:10.4202/app.00955.2021. ISSN 0567-7920. S2CID 247861504.
- Gaetano, L. C.; Abdala, F.; Seoane, F. D.; Tartaglione, A.; Schulz, M.; Otero, A.; Leardi, J. M.; Apaldetti, C.; Krapovickas, V.; Steimbach, E. (2022). "A new cynodont from the Upper Triassic Los Colorados Formation (Argentina, South America) reveals a novel paleobiogeographic context for mammalian ancestors". Scientific Reports. 12 (1): Article number 6451. doi:10.1038/s41598-022-10486-4. PMC 9038739. PMID 35468982.
- Reisz, R. R.; Scott, D.; Modesto, S. P. (2022). "Cranial Anatomy of the Caseid Synapsid Cotylorhynchus romeri, a Large Terrestrial Herbivore From the Lower Permian of Oklahoma, U.S.A". Frontiers in Earth Science. 10: Article 847560. doi:10.3389/feart.2022.847560.
- Kammerer, C. F.; Araújo, R.; Cumbane, K.; MaCungo, Z.; Smith, R. M. H.; Angielczyk, K. D. (2022). "New material of Dicynodon angielczyki (Synapsida: Anomodontia) from Mozambique and Zambia with biostratigraphic implications for African Permo-Triassic basins". Journal of Vertebrate Paleontology: e2041652. doi:10.1080/02724634.2021.2041652.
- Sidor, C. A. (2022). "New information on gorgonopsian pedal morphology based on articulated material from Zambia". Journal of African Earth Sciences. 191: Article 104533. doi:10.1016/j.jafrearsci.2022.104533. S2CID 247983136.
- Liu, J.; Yang, W. (2022). "A gorgonopsian from the Wutonggou Formation (Changhsingian, Permian) of Turpan Basin, Xinjiang, China". Palaeoworld. doi:10.1016/j.palwor.2022.04.004.
- Norton, L. A.; Abdala, F.; Rubidge, B. S.; Botha, J. (2022). "Tooth replacement in the non-mammalian cynodont Cynosaurus suppostus (Therapsida) from the late Permian of South Africa". Journal of Vertebrate Paleontology. 41 (4): e2001650. doi:10.1080/02724634.2021.2001650. S2CID 245861861.
- Filippini, F. S.; Abdala, F.; Cassini, G. H. (2022). "Body mass estimation in Triassic cynodonts from Argentina based on limb variables". Acta Palaeontologica Polonica. 67. doi:10.4202/app.00919.2021.
- Melo, T. P.; Martinelli, A. G.; Soares, M. B. (2022). "New occurrences of massetognathine traversodontids and chiniquodontids (Synapsida, Cynodontia) from the early Late Triassic Santacruzodon Assemblage Zone (Santa Maria Supersequence, southern Brazil): Geographic and biostratigraphic implications". Journal of South American Earth Sciences. 115: Article 103757. Bibcode:2022JSAES.11503757M. doi:10.1016/j.jsames.2022.103757. S2CID 247248628.
- Luo, Z.-X.; Bhullar, B.-A. S.; Crompton, A. W.; Neander, A. I.; Rowe, T. B. (2022). "Reexamination of the mandibular and dental morphology of the Early Jurassic mammaliaform Hadrocodium wui". Acta Palaeontologica Polonica. 67 (1): 95–113. doi:10.4202/app.00949.2021. S2CID 247905795.
- Schlagintweit, F.; Sánchez-Beristain, F.; Daoud, H. S.; Rashidi, K. (2022). "Acanthochaetetes fischeri n. sp. (coralline demosponge) from the upper Paleocene (Thanetian) of Iraq (Kurdistan Region) and Iran (Sistan Suture Zone)". Acta Palaeontologica Romaniae. 18 (2): 53–62. doi:10.35463/j.apr.2022.02.02. S2CID 246318072.
- Muir, L. A.; Zhang, Y.; Botting, J. P.; Ma, X. (2022). "Convergent evolution in planktic graptolites: independent origin of the dicranograptid morphology in the Hirnantian (latest Ordovician)". Alcheringa: An Australasian Journal of Palaeontology. 45 (4): 395–400. doi:10.1080/03115518.2021.2003430. S2CID 245865884.
- Botting, J. P.; Janussen, D.; Muir, L. A.; Dohrmann, M.; Ma, J.; Zhang, Y. (2022). "Extraordinarily early Venus' flower basket sponges (Hexactinellida, Euplectellidae) from the uppermost Ordovician Anji Biota, China". Palaeontology. 65 (2): e12592. doi:10.1111/pala.12592. S2CID 247641202.
- Novozhilova, N. V. (2022). "Early Cambrian palaeoscolecidan sclerites from the western limb of the Chekurovka anticline (Siberian Platform)". Paleontological Journal. 56 (2): 147–153. doi:10.1134/S0031030122020095.
- Zatoń, M.; Vinn, O.; Toom, U.; Słowiński, J. (2022). "New encrusting tentaculitoids from the Silurian of Estonia and taxonomic status of Anticalyptraea Quenstedt, 1867". GFF: 1–7. doi:10.1080/11035897.2022.2042378. S2CID 248103801.
- Mann, A.; Pardo, J. D.; Maddin, H. C. (2022). "Snake-like limb loss in a Carboniferous amniote". Nature Ecology & Evolution. in press: 1–8. doi:10.1038/s41559-022-01698-y. PMID 35347258. S2CID 247778148.
- Botting, J. P.; Ma, J.-Y. (2022). "A probable hyalonematid sponge (Hexactinellida: Amphidiscophora) from the Middle Ordovician of the Builth Inlier, Wales". Palaeoworld. in press. doi:10.1016/j.palwor.2022.01.011. S2CID 246594829.
- Kočí, T.; Goedert, J. L.; Buckeridge, H. S. (2022). "Eocene tube-dwelling annelids (Polychaeta: Sedentaria) from the Black Hills, western Washington State: the first record of Neodexiospira from North America". PalZ. in press. doi:10.1007/s12542-022-00604-y. S2CID 247623413.
- Li, L.; Reitner, J.; Gong, F.; Yan, G.; Wu, R. (2022). "A new stiodermatid (Hexactinellida, Porifera) from the latest Ordovician of Anhui, South China and its significance for searching the missing link between the Cambrian and late Palaeozoic stiodermatid lineage". Historical Biology: An International Journal of Paleobiology. in press: 1–11. doi:10.1080/08912963.2021.2024180. S2CID 245820581.
- Pates, S.; Wolfe, J. M.; Lerosey-Aubril, R.; Daley, A. C.; Ortega-Hernández, J. (2022). "New opabiniid diversifies the weirdest wonders of the euarthropod stem group". Proceedings of the Royal Society B: Biological Sciences. 289 (1968): Article ID 20212093. doi:10.1098/rspb.2021.2093. PMC 8826304. PMID 35135344.
- Hoyal Cuthill, J. F. (2022). "Ediacaran survivors in the Cambrian: suspicions, denials and a smoking gun". Geological Magazine. in press: 1–10. doi:10.1017/S0016756821001333. S2CID 247829362.
- Aragonés Suarez, P.; Leys, S. P. (31 January 2022). "The sponge pump as a morphological character in the fossil record" (PDF). Paleobiology: 1–16. doi:10.1017/PAB.2021.43. ISSN 0094-8373. Wikidata Q111384420.
- Nõlvak, J.; Liang, Y.; Hints, O. (2022). "Early and early Middle Ordovician chitinozoans from the Baldone drill core, central Latvia". Estonian Journal of Earth Sciences. 71 (1): 25–43. doi:10.3176/earth.2022.03.
- Yi, Y.; Chen, F.; Algeo, T. J.; Feng, Q. (2022). "Deep-water fossil assemblages from the Ediacaran-Cambrian transition of western Hunan, South China and their biostratigraphic and evolutionary implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 591: Article 110878. Bibcode:2022PPP...591k0878Y. doi:10.1016/j.palaeo.2022.110878. S2CID 246806627.
- Zhang, Y.; Zhang, X. (2022). "Non-metazoan affinity of embryo-like Megasphaera fossils from the Ediacaran Zhenba microfossil assemblage". Precambrian Research. 374: Article 106645. doi:10.1016/j.precamres.2022.106645. S2CID 247959735.
- Hupp, B. N.; Kelly, D. C.; Williams, J. W. (2022). "Isotopic filtering reveals high sensitivity of planktic calcifiers to Paleocene–Eocene thermal maximum warming and acidification". Proceedings of the National Academy of Sciences of the United States of America. 119 (9): e2115561119. doi:10.1073/pnas.2115561119. PMC 8892336. PMID 35193977.
- Bergh, E. W.; Compton, J. S. (2022). "Taxonomy of Middle Miocene foraminifera from the northern Namibian continental shelf". Zootaxa. 5091 (1): 1–55. doi:10.11646/zootaxa.5091.1.1. PMID 35391261. S2CID 248024083.
- Pérez-Pinedo, D.; McKean, C.; Taylor, R.; Nicholls, R.; McIlroy, D. (2022). "Charniodiscus and Arborea Are Separate Genera Within the Arboreomorpha: Using the Holotype of C. concentricus to Resolve a Taphonomic/Taxonomic Tangle". Frontiers in Earth Science. 9: Article 785929. Bibcode:2022FrEaS...9.1393P. doi:10.3389/feart.2021.785929.
- Yang, C.; Li, Y.; Selby, D.; Wan, B.; Guan, C.; Zhou, C.; Li, X.-H. (2022). "Implications for Ediacaran biological evolution from the ca. 602 Ma Lantian biota in China". Geology. 50 (5): 562–566. doi:10.1130/G49734.1. S2CID 246788576.
- Hsieh, S.; Plotnick, R. E.; Bush, A. M. (2022). "The Phanerozoic aftermath of the Cambrian information revolution: sensory and cognitive complexity in marine faunas". Paleobiology. in press: 1–23. doi:10.1017/pab.2021.46. S2CID 246399509.
- Chen, F.; Topper, T. P.; Skovsted, C. B.; Strotz, L. C.; Shen, J.; Zhang, Z. (2022). "Cambrian ecological complexities: perspectives from the earliest brachiopod - supported benthic communities in the early Cambrian Guanshan Lagerstätte". Gondwana Research. 107: 30–41. Bibcode:2022GondR.107...30C. doi:10.1016/j.gr.2022.02.008. S2CID 247204451.
- Saleh, F.; Guenser, P.; Gibert, C.; Balseiro, D.; Serra, F.; Waisfeld, B. G.; Antcliffe, J. B.; Daley, A. C.; Mángano, M. G.; Buatois, L. A.; Ma, X.; Vizcaïno, D.; Lefebvre, B. (2022). "Contrasting Early Ordovician assembly patterns highlight the complex initial stages of the Ordovician Radiation". Scientific Reports. 12 (1): Article number 3852. Bibcode:2022NatSR..12.3852S. doi:10.1038/s41598-022-07822-z. PMC 8907272. PMID 35264650.
- Brocklehurst, N.; Ford, D. P.; Benson, R. B. J. (2022). "Early origins of divergent patterns of morphological evolution on the mammal and reptile stem-lineages". Systematic Biology. in press. doi:10.1093/sysbio/syac020. PMID 35274702.
- Matamales-Andreu, R.; Mujal, E.; Dinarès-Turell, J.; Kustatscher, E.; Roghi, G.; Oms, O.; Galobart, À.; Fortuny, J. (2022). "Early–middle Permian ecosystems of equatorial Pangaea: Integrated multi-stratigraphic and palaeontological review of the Permian of Mallorca (Balearic Islands, western Mediterranean)". Earth-Science Reviews. 228: Article 103948. Bibcode:2022ESRv..22803948M. doi:10.1016/j.earscirev.2022.103948. S2CID 246438404.
- Lee, S.; Shi, G. R.; Nakrem, H. A.; Woo, J.; Tazawa, J.-I. (2022). "Mass extinction or extirpation: Permian biotic turnovers in the northwestern margin of Pangea". GSA Bulletin. in press. doi:10.1130/B36227.1. S2CID 246585320.
- Dal Corso, J.; Song, H.; Callegaro, S.; Chu, D.; Sun, Y.; Hilton, J.; Grasby, S. E.; Joachimski, M. M.; Wignall, P. B. (2022). "Environmental crises at the Permian–Triassic mass extinction". Nature Reviews Earth & Environment. 3 (3): 197–214. Bibcode:2022NRvEE...3..197D. doi:10.1038/s43017-021-00259-4. S2CID 247013868.
- Foster, W. J.; Ayzel, G.; Münchmeyer, J.; Rettelbach, T.; Kitzmann, N. H.; Isson, T. T.; Mutti, M.; Aberhan, M. (2022). "Machine learning identifies ecological selectivity patterns across the end-Permian mass extinction". Paleobiology. in press: 1–15. doi:10.1017/pab.2022.1. S2CID 247203709.
- Sues, H.-D.; Olsen, P. E.; Fedak, T. J.; Schoch, R. R. (2022). "Diverse assemblage of Middle Triassic continental tetrapods from the Newark Supergroup of Nova Scotia (Canada)". Journal of Vertebrate Paleontology. 41 (4): e2023168. doi:10.1080/02724634.2021.2023168. S2CID 247181044.
- Liu, F.; Wu, R.; Han, F. (2022). "Vertebrate diversity of the Yanliao Biota and comparison with other biotas". Acta Palaeontologica Sinica. 61 (1). doi:10.19800/j.cnki.aps.2020027.
- Manitkoon, S.; Deesri, U.; Lauprasert, K.; Warapeang, P.; Nonsrirach, T.; Nilpanapan, A.; Wongko, K.; Chanthasit, P. (2022). "Fossil assemblage from the Khok Pha Suam locality of northeastern, Thailand: an overview of vertebrate diversity from the Early Cretaceous Khok Kruat Formation (Aptian-Albian)". Fossil Record. 25 (1): 83–98. doi:10.3897/fr.25.83081.
- Fanti, F.; Bell, P. R.; Vavrek, M.; Larson, D.; Koppelhus, E.; Sissons, R. L.; Langone, A.; Campione, N. E.; Sullivan, C. (2022). "Filling the Bearpaw gap: Evidence for palaeoenvironment-driven taxon distribution in a diverse, non-marine ecosystem from the late Campanian of west-Central Alberta, Canada". Palaeogeography, Palaeoclimatology, Palaeoecology. 592: Article 110923. Bibcode:2022PPP...592k0923F. doi:10.1016/j.palaeo.2022.110923. S2CID 247348345.
- McCurry, M. R.; Cantrill, D. J.; Smith, P. M.; Beattie, R.; Dettmann, M.; Baranov, V.; Magee, C.; Nguyen, J. M. T.; Forster, M. A.; Hinde, J.; Pogson, R.; Wang, H.; Marjo, C. E.; Vasconcelos, P.; Frese, M. (2022). "A Lagerstätte from Australia provides insight into the nature of Miocene mesic ecosystems". Science Advances. 8 (1): eabm1406. Bibcode:2022SciA....8M1406M. doi:10.1126/sciadv.abm1406. PMC 8741189. PMID 34995110.
- Zelenkov, N. V.; Syromyatnikova, E. V.; Tarasenko, K. K.; Titov, V. V.; Tesakov, A. S. (2022). "Southeastern Europe as the arena of vertebrate evolution in the late Miocene". Paleontological Journal. 56 (2): 213–226. doi:10.1134/S0031030122020149.
- Dantas, V. L.; Pausas, J. G. (2022). "The legacy of the extinct Neotropical megafauna on plants and biomes". Nature Communications. 13 (1): Article number 129. Bibcode:2022NatCo..13..129D. doi:10.1038/s41467-021-27749-9. PMC 8748933. PMID 35013233.
- Ramm, T.; Thorn, K. M.; Hipsley, C. A.; Müller, J.; Hocknull, S.; Melville, J. (2022). "Herpetofaunal diversity changes with climate: evidence from the Quaternary of McEachern's Deathtrap Cave, southeastern Australia". Journal of Vertebrate Paleontology. in press: e2009844. doi:10.1080/02724634.2021.2009844. S2CID 247277364.
- Hansford, J. P.; Turvey, S. T. (2022). "Dietary isotopes of Madagascar's extinct megafauna reveal holocene browsing and grazing guilds". Biology Letters. 18 (4): Article ID 20220094. doi:10.1098/rsbl.2022.0094. PMID 35414222. S2CID 248119857.
- Finch, S. P.; D'Emic, M. D. (2022). "Evolution of amniote dentine apposition rates". Biology Letters. 18 (4): Article ID 20220092. doi:10.1098/rsbl.2022.0092. PMID 35472282.
- Saleh, F.; Qi, C.; Buatois, L. A.; Mángano, M. G.; Paz, M.; Vaucher, R.; Zheng, Q.; Hou, X.-G.; Gabbott, S. E.; Ma, X. (2022). "The Chengjiang Biota inhabited a deltaic environment". Nature Communications. 13 (1): Article number 1569. Bibcode:2022NatCo..13.1569S. doi:10.1038/s41467-022-29246-z. PMC 8943010. PMID 35322027.
- Zhao, Z.; Thibault, N. R.; Dahl, T. W.; Schovsbo, N. H.; Sørensen, A. L.; Rasmussen, C. M. Ø.; Nielsen, A. T. (2022). "Synchronizing rock clocks in the late Cambrian". Nature Communications. 13 (1): Article number 1990. doi:10.1038/s41467-022-29651-4. PMC 9007955. PMID 35418121.
- Bicknell, R. D. C.; Naugolnykh, S. V. (2022). "Palaeoecological reconstruction of the Late Devonian Lebedjan biota". Historical Biology: An International Journal of Paleobiology. in press: 1–9. doi:10.1080/08912963.2022.2032025. S2CID 246820064.
- Marchetti, L.; Forte, G.; Kustatscher, E.; DiMichele, W. A.; Lucas, S. G.; Roghi, G.; Juncal, M. A.; Hartkopf-Fröder, C.; Krainer, K.; Morelli, C.; Ronchi, A. (2022). "The Artinskian Warming Event: an Euramerican change in climate and the terrestrial biota during the early Permian". Earth-Science Reviews. 226: Article 103922. Bibcode:2022ESRv..22603922M. doi:10.1016/j.earscirev.2022.103922. S2CID 245892961.
- Haig, D. W.; Dillinger, A.; Playford, G.; Riera, R.; Sadekov, A.; Skrzypek, G.; Håkansson, E.; Mory, A. J.; Peyrot, D.; Thomas, C. (2022). "Methane seeps following Early Permian (Sakmarian) deglaciation, interior East Gondwana, Western Australia: Multiphase carbonate cements, distinct carbon-isotope signatures, extraordinary biota". Palaeogeography, Palaeoclimatology, Palaeoecology. 591: Article 110862. Bibcode:2022PPP...591k0862H. doi:10.1016/j.palaeo.2022.110862. S2CID 246645062.
- Fielding, C. R.; Frank, T. D.; Savatic, K.; Mays, C.; McLoughlin, S.; Vajda, V.; Nicoll, R. S. (2022). "Environmental change in the late Permian of Queensland, NE Australia: The warmup to the end-Permian Extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 594: Article 110936. Bibcode:2022PPP...594k0936F. doi:10.1016/j.palaeo.2022.110936. S2CID 247514266.
- Foster, W. J.; Hirtz, J. A.; Farrell, C.; Reistroffer, M.; Twitchett, R. J.; Martindale, R. C. (2022). "Bioindicators of severe ocean acidification are absent from the end-Permian mass extinction". Scientific Reports. 12 (1): Article number 1202. Bibcode:2022NatSR..12.1202F. doi:10.1038/s41598-022-04991-9. PMC 8786885. PMID 35075151.
- Fox, C. P.; Whiteside, J. H.; Olsen, P. E.; Cui, X.; Summons, R. E.; Idiz, E.; Grice, K. (2022). "Two-pronged kill mechanism at the end-Triassic mass extinction". Geology. 50 (4): 448–453. Bibcode:2022Geo....50..448F. doi:10.1130/G49560.1. S2CID 245782726.
- Onoue, T.; Michalík, J.; Shirozu, H.; Yamashita, M.; Yamashita, K.; Kusaka, S.; Soda, K. (2022). "Extreme continental weathering in the northwestern Tethys during the end-Triassic mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology. 594: Article 110934. Bibcode:2022PPP...594k0934O. doi:10.1016/j.palaeo.2022.110934. S2CID 247515330.
- Yu, Z.; Dong, L.; Huyskens, M. H.; Yin, Q.-Z.; Wang, Y.; Deng, C.; He, H. (2022). "The exceptionally preserved Early Cretaceous "Moqi Fauna" from eastern Inner Mongolia, China, and its age relationship with the Jehol Biota". Palaeogeography, Palaeoclimatology, Palaeoecology. 589: Article 110824. Bibcode:2022PPP...589k0824Y. doi:10.1016/j.palaeo.2021.110824. S2CID 245714839.
- Beveridge, T. L.; Roberts, E. M.; Ramezani, J.; Titus, A. L.; Eaton, J. G.; Irmis, R. B.; Sertich, J. J. W. (2022). "Refined geochronology and revised stratigraphic nomenclature of the Upper Cretaceous Wahweap Formation, Utah, U.S.A. and the age of early Campanian vertebrates from southern Laramidia". Palaeogeography, Palaeoclimatology, Palaeoecology. 591: Article 110876. Bibcode:2022PPP...591k0876B. doi:10.1016/j.palaeo.2022.110876. S2CID 246766015.
- During, M. A. D.; Smit, J.; Voeten, D. F. A. E.; Berruyer, C.; Tafforeau, P.; Sanchez, S.; Stein, K. H. W.; Verdegaal-Warmerdam, S. J. A.; van der Lubbe, J. H. J. L. (2022). "The Mesozoic terminated in boreal spring". Nature. 603 (7899): 91–94. Bibcode:2022Natur.603...91D. doi:10.1038/s41586-022-04446-1. PMC 8891016. PMID 35197634. S2CID 247082799.
- Morgan, J. V.; Bralower, T. J.; Brugget, J.; Wünnemann, K. (2022). "The Chicxulub impact and its environmental consequences". Nature Reviews Earth & Environment. doi:10.1038/s43017-022-00283-y. S2CID 248088486.
- Miao, Y.; Chang, H.; Li, L.; Cheng, F.; Garzione, C.; Yang, Y. (2022). "Early Oligocene—Late Miocene Wildfire History in the Northern Tibetan Plateau and Links to Temperature-Driven Precipitation Changes". Frontiers in Earth Science. 10: Article 850809. doi:10.3389/feart.2022.850809.
- Casanovas-Vilar, I.; Garcés, M.; Marcuello, Á.; Abella, J.; Madurell-Malapeira, J.; Jovells-Vaqué, S.; Cabrera, L.; Galindo, J.; Beamud, E.; Ledo, J. J.; Queralt, P.; Martí, A.; Sanjuan, J.; Martín-Closas, C.; Jiménez-Moreno, G.; Luján, À. H.; Villa, A.; DeMiguel, D.; Sánchez, I. M.; Robles, J. M.; Furió, M.; Van den Hoek Ostende, L. W.; Sánchez-Marco, A.; Sanisidro, Ó.; Valenciano, A.; García-Paredes, I.; Angelone, A.; Pons-Monjo, G.; Azanza, B.; Delfino, M.; Bolet, A.; Grau-Camats, M.; Vizcaíno-Varo, V.; Mormeneo, D.; Kimura, Y.; Moyà-Solà, S.; Alba, D. M. (2022). "Els Casots (Subirats, Catalonia), a key site for the Miocene vertebrate record of Southwestern Europe". Historical Biology: An International Journal of Paleobiology. in press: 1–15. doi:10.1080/08912963.2022.2043296. hdl:10261/265685. S2CID 247468844.
- Nguy, W. H.; Secord, R. (2022). "Middle Miocene paleoenvironmental reconstruction in the central Great Plains, USA, from stable carbon isotopes in ungulates". Palaeogeography, Palaeoclimatology, Palaeoecology. 594: Article 110929. Bibcode:2022PPP...594k0929N. doi:10.1016/j.palaeo.2022.110929. S2CID 247389370.
- Cohen, A. S.; Du, A.; Rowan, J.; Yost, C. L.; Billingsley, A. L.; Campisano, C. J.; Brown, E. T.; Deino, A. L.; Feibel, C. S.; Grant, K.; Kingston, J. D.; Lupien, R. L.; Muiruri, V.; Owen, R. B.; Reed, K. E.; Russell, J.; Stockhecke, M. (2022). "Plio-Pleistocene environmental variability in Africa and its implications for mammalian evolution". Proceedings of the National Academy of Sciences of the United States of America. 119 (16): e2107393119. doi:10.1073/pnas.2107393119. PMID 35412903.
- Su, D. F.; Yohannes Haile-Selassie (2022). "Mosaic habitats at Woranso-Mille (Ethiopia) during the Pliocene and implications for Australopithecus paleoecology and taxonomic diversity". Journal of Human Evolution. 163: Article 103076. doi:10.1016/j.jhevol.2021.103076. PMID 34998271. S2CID 245788627.
- Hopley, P. J.; Cerling, T. E.; Crété, L.; Werdelin, L.; Mwebi, O.; Manthi, F. K.; Leakey, L. N. (2022). "Stable isotope analysis of carnivores from the Turkana Basin, Kenya: Evidence for temporally-mixed fossil assemblages". Quaternary International. doi:10.1016/j.quaint.2022.04.004.
- Tu, H.; Luo, L.; Deng, C.; Ou, Z.; Lai, Z.; Shen, G.; Bae, C. J.; Granger, D. (2022). "Isochron 26Al/10Be burial dating of the Xiashagou Fauna in the Nihewan Basin, northern China: Implications for biogeography and early hominin dispersals". Quaternary Science Reviews. 283: Article 107447. Bibcode:2022QSRv..28307447T. doi:10.1016/j.quascirev.2022.107447. S2CID 247826933.
- Murchie, T. J.; Karpinski, E.; Eaton, K.; Duggan, A. T.; Baleka, S.; Zazula, G.; MacPhee, R. D. E.; Froese, D.; Poinar, H. N. (2022). "Pleistocene mitogenomes reconstructed from the environmental DNA of permafrost sediments". Current Biology. 32 (4): 851–860.e7. doi:10.1016/j.cub.2021.12.023. PMID 35016010. S2CID 245838890.
- Clark, J.; Carlson, A. E.; Reyes, A. V.; Carlson, E. C. B.; Guillaume, L.; Milne, G. A.; Tarasov, L.; Caffee, M.; Wilcken, K.; Rood, D. H. (2022). "The age of the opening of the Ice-Free Corridor and implications for the peopling of the Americas". Proceedings of the National Academy of Sciences of the United States of America. 119 (14): e2118558119. doi:10.1073/pnas.2118558119. PMID 35312340.
- Wiemann, Jasmina; Briggs, Derek E. G. (2022). "Raman spectroscopy is a powerful tool in molecular paleobiology: An analytical response to Alleon et al. (doi.org/10.1002/bies.202000295)". BioEssays. 44 (2): Article 2100070. doi:10.1002/bies.202100070. ISSN 1521-1878. PMID 34993976. S2CID 245824320. Archived from the original on 2022-01-10. Retrieved 2022-01-10.
- Neaux, D.; Louail, M.; Ferchaud, S.; Surault, J.; Merceron, G. (2022). "Experimental assessment of the relationship between diet and mandibular morphology using a pig model: new insights for paleodietary reconstructions". The Anatomical Record. in press. doi:10.1002/ar.24895. PMID 35142076. S2CID 246700374.
- Amano, H.; Rae, T. C.; Tsoukala, E.; Nakatsukasa, M.; Ogihara, N. (2022). "Computerized restoration of a fossil cranium based on selective elimination of estimated taphonomic deformation". American Journal of Biological Anthropology. in press. doi:10.1002/ajpa.24493. S2CID 246618526.
- Demuth, O. E.; Wiseman, A. L. A.; van Beesel, J.; Mallison, H.; Hutchinson, J. R. (2022). "Three-dimensional polygonal muscle modelling and line of action estimation in living and extinct taxa". Scientific Reports. 12 (1): Article number 3358. Bibcode:2022NatSR..12.3358D. doi:10.1038/s41598-022-07074-x. PMC 8888607. PMID 35233027.
- Lallensack, J. N.; Falkingham, P. L. (2022). "A new method to calculate limb phase from trackways reveals gaits of sauropod dinosaurs". Current Biology. 32 (7): 1635–1640.e4. doi:10.1016/j.cub.2022.02.012. PMID 35240050. S2CID 247198973.
- Cisneros, J. C.; Raja, N. B.; Ghilardi, A. M.; Dunne, E. M.; Pinheiro, F. L.; Regalado Fernández, O. R; Sales, M. A. F.; Rodríguez-de la Rosa, R. A.; Miranda-Martínez, A. Y.; González-Mora, S.; Bantim, R. A. M.; de Lima, F. J.; Pardo, J. D. (2022). "Digging deeper into colonial palaeontological practices in modern day Mexico and Brazil". Royal Society Open Science. 9 (3): Article ID 210898. Bibcode:2022RSOS....910898C. doi:10.1098/rsos.210898. PMC 8889171. PMID 35291323.
- Joachimski, M. M.; Müller, J.; Gallagher, T. M.; Mathes, G.; Chu, D. L.; Mouraviev, F.; Silantiev, V.; Sun, Y. D.; Tong, J. N. (2022). "Five million years of high atmospheric CO2 in the aftermath of the Permian-Triassic mass extinction". Geology. doi:10.1130/G49714.1.
- Mau, M.; Kent, D. V.; Clemmensen, L. B. (2022). "Planetary chaos and inverted climate phasing in the Late Triassic of Greenland". Proceedings of the National Academy of Sciences of the United States of America. 119 (17): e2118696119. doi:10.1073/pnas.2118696119. PMID 35452307.
- Gaskell, D. E.; Huber, M.; O’Brien, C. L.; Inglis, G. N.; Acosta, R. P.; Poulsen, C. J.; Hull, P. M. (2022). "The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years". Proceedings of the National Academy of Sciences of the United States of America. 119 (11): e2111332119. doi:10.1073/pnas.2111332119. PMC 8931236. PMID 35254906. S2CID 247293580.
- Junium, C. K.; Zerkle, A. L.; Witts, J. D.; Ivany, L. C.; Yancey, T. E.; Liu, C.; Claire, M. W. (2022). "Massive perturbations to atmospheric sulfur in the aftermath of the Chicxulub impact". Proceedings of the National Academy of Sciences of the United States of America. 119 (14): e2119194119. doi:10.1073/pnas.2119194119. PMID 35312339.
- Agterhuis, T.; Ziegler, M.; de Winter, N. J.; Lourens, L. J. (2022). "Warm deep-sea temperatures across Eocene Thermal Maximum 2 from clumped isotope thermometry". Communications Earth & Environment. 3 (1): Article number 39. Bibcode:2022ComEE...3...39A. doi:10.1038/s43247-022-00350-8.
- Straume, E. O.; Nummelin, A.; Gaina, C.; Nisancioglu, K. H. (2022). "Climate transition at the Eocene–Oligocene influenced by bathymetric changes to the Atlantic–Arctic oceanic gateways". Proceedings of the National Academy of Sciences of the United States of America. 119 (17): e2115346119. doi:10.1073/pnas.2115346119. PMID 35446685.
- Timmermann, A.; Yun, K.-S.; Raia, P.; Ruan, J.; Mondanaro, A.; Zeller, E.; Zollikofer, C.; Ponce de León, M.; Lemmon, D.; Willeit, M.; Ganopolski, A. (2022). "Climate effects on archaic human habitats and species successions". Nature: 1–7. doi:10.1038/s41586-022-04600-9. PMID 35418680.
- Neugebauer, I.; Dinies, M.; Plessen, B.; Dräger, N.; Brauer, A.; Brückner, H.; Frenzel, P.; Gleixner, G.; Hoelzmann, P.; Krahn, K. J.; Pint, A.; Schwab, V. F.; Schwarz, A.; Tjallingii, R.; Engel, M. (2022). "The unexpectedly short Holocene Humid Period in Northern Arabia". Communications Earth & Environment. 3 (1): Article number 47. Bibcode:2022ComEE...3...47N. doi:10.1038/s43247-022-00368-y.